• 제목/요약/키워드: facial detection

검색결과 378건 처리시간 0.025초

피부색 영역의 분할을 통한 후보 검출과 부분 얼굴 분류기에 기반을 둔 얼굴 검출 시스템 (Face Detection System Based on Candidate Extraction through Segmentation of Skin Area and Partial Face Classifier)

  • 김성훈;이현수
    • 전자공학회논문지CI
    • /
    • 제47권2호
    • /
    • pp.11-20
    • /
    • 2010
  • 본 논문에서는 피부색 정보를 이용한 얼굴 후보 검출 방법과 얼굴의 구조적 특징을 이용한 얼굴 확인 방법으로 구성된 얼굴 검출 시스템을 제안한다. 먼저 제안하는 얼굴 후보 검출 방법은 피부색 영역과 피부색의 주변 영역에 대한 이미지 분할과 병합 알고리듬을 이용한다. 이미지 분할과 병합 알고리듬의 적용은 복잡한 이미지에 존재하는 다양한 얼굴들을 후보로 검출할 수 있다. 그리고 제안하는 얼굴 확인 방법은 얼굴을 지역적인 특징에 따라 분류 가능한 부분 얼굴 분류기를 사용하여 얼굴의 구조적 특징을 판단하고, 얼굴과 비-얼굴을 구별한다. 부분 얼굴 분류기는 학습 과정에서 얼굴 이미지만을 사용하고, 비-얼굴 이미지는 고려하지 않기 때문에 적은 수의 훈련 이미지를 사용한다. 실험 결과 제안한 얼굴 후보 검출 방법은 기존의 방법보다 평균 9.55% 많은 얼굴을 후보로 검출하였다. 그리고 얼굴/비-얼굴 분류 실험에서 비-얼굴에 대한 분류율이 99%일 때 기존의 분류기보다 평균 4.97% 높은 얼굴 분류율을 달성 하였다.

배경의 변화에 따른 피부색상 검출 알고리즘의 성능 비교 (Performance Comparison of Skin Color Detection Algorithms by the Changes of Backgrounds)

  • 장석우
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권3호
    • /
    • pp.27-35
    • /
    • 2010
  • 정확하게 피부 색상을 검출하는 방법은 얼굴 인식 및 추적, 표정 인식, 성인 영상 검출, 헬스케어 등의 다양한 분야에서 매우 유용하게 사용된다. 본 논문에서는 일반광과 실내 조명이 더해진 환경에서 피사체의 거리를 변경하면서, 그리고피사체배경의색상을변경함에따라다양한피부색상검출알고리즘의성능을비교평가한다. 실험대상은 피부톤의 차이를 보이는 남자 2명과 여자 한 명이고, 배경을 화이트, 블랙, 오렌지, 핑크, 옐로우의 5가지 색으로 구분하여 테스트를 하였다. 성능 평가에 사용한 피부색상 추출 알고리즘은 Peer 알고리즘, NNYUV, NNHSV, LutYUV, Kismet 알고리즘이며, 카메라와 피사체 사이의 거리는 60cm에서 120cm 사이로 한정하여 실험을 하였다. 성능 측정 실험 결과 피사체의 배경 변화에 따른 알고리즘이 성능의 차이를 보이는데, 전반적으로 뉴럴 네트워크를 이용한 NNHSV, NNYUV, 그리고 LutYUV이 안정적인 결과를 보여주었으며, 나머지 알고리즘들은 배경의 변화에 따라 피부색상 검출율이 영향을 많이 받았다. 본 논문에서 보여준 다양한 성능 평가 결과들은 피사체의 주변 환경이 동적으로 변화하는 실제 환경에서 상황에 따라 적응적이고 정확도가 높은 피부 색상 추출 알고리즘을 개발하는데 효과적으로 활용될 것으로 기대된다.

색상과 얼굴 특징 정보를 이용한 얼굴 추적 (Face Tracking Using Face Feature and Color Information)

  • 이경호
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권11호
    • /
    • pp.167-174
    • /
    • 2013
  • 본 논문에서는 컬러 영상에서 얼굴을 추적하는 시스템을 구현하였다. 얼굴 추적은 영상 내에 존재하는 얼굴 영역을 컴퓨터의 기능을 이용하여 찾아내는 작업으로 로봇 시각 시스템 등에 필요한 기능이다. 그러나 입력되는 영상에 존재하는 피부색 범위 화소추출과 같은 단순한 수행으로는 얼굴 추적에 어려움이 있다. 피부색은 빛의 조건에 의해 다른 색으로 표현될 뿐 아니라 피부색은 얼굴 뿐 아니라 손과 발 등 다양한 곳에 존재하기 때문에 얼굴을 추적하기 위한 다른 조치가 필요하다. 본 논문에서는 피부색 추출을 위한 함수를 사용하되 효율 향상을 위한 조명 보정을 수행하였고 또 피부색 범위 내에서 추출된 피부색 블록에서 눈 코 입의 특징을 찾아 얼굴로 확정하는 전 과정을 수행하는 시스템을 구현하였다. 제안된 조명 보정은 피부색 추출에 초점을 맞추어 변형 sine 함수로 인간 시각에는 도움이 되지 않더라도 피부색 추출에는 약4% 정도의 개선을 보였으며, 얼굴의 특징들의 추출에는 다양한 색 공간에서 다양한 표현 값들을 증폭하거나 축소, 대비시킴으로서 얼굴 특징들을 추출되게 하여 얼굴로 판단하여 얼굴 추적을 하여, 얼굴이 잘 추적되게 하였다.

Autism Spectrum Disorder Detection in Children using the Efficacy of Machine Learning Approaches

  • Tariq Rafiq;Zafar Iqbal;Tahreem Saeed;Yawar Abbas Abid;Muneeb Tariq;Urooj Majeed;Akasha
    • International Journal of Computer Science & Network Security
    • /
    • 제23권4호
    • /
    • pp.179-186
    • /
    • 2023
  • For the future prosperity of any society, the sound growth of children is essential. Autism Spectrum Disorder (ASD) is a neurobehavioral disorder which has an impact on social interaction of autistic child and has an undesirable effect on his learning, speaking, and responding skills. These children have over or under sensitivity issues of touching, smelling, and hearing. Its symptoms usually appear in the child of 4- to 11-year-old but parents did not pay attention to it and could not detect it at early stages. The process to diagnose in recent time is clinical sessions that are very time consuming and expensive. To complement the conventional method, machine learning techniques are being used. In this way, it improves the required time and precision for diagnosis. We have applied TFLite model on image based dataset to predict the autism based on facial features of child. Afterwards, various machine learning techniques were trained that includes Logistic Regression, KNN, Gaussian Naïve Bayes, Random Forest and Multi-Layer Perceptron using Autism Spectrum Quotient (AQ) dataset to improve the accuracy of the ASD detection. On image based dataset, TFLite model shows 80% accuracy and based on AQ dataset, we have achieved 100% accuracy from Logistic Regression and MLP models.

실시간 응용을 위한 웨이블릿 변환 기반의 얼굴 검출 (Wavelet Transform-based Face Detection for Real-time Applications)

  • 송해진;고병철;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권9호
    • /
    • pp.829-842
    • /
    • 2003
  • 최근 화상 회의, 화상 전화, 모바일 환경에서의 화상 통신, 얼굴 인식을 이용한 보안 시스템 등의 상업화에 힘입어 비디오에서의 얼굴 검출 및 추적 기술은 눈부신 발전을 이룩하였다. 또한, 얼굴 요소 검출은 요소 그 자체뿐 아니라 정화한 얼굴 영역 검출을 위한 필수 단계로서 중요한 연구 주제가 되고 있다. 그러나 영상에 나타난 복잡한 배경과 카메라 조작 및 조명에 의한 색상 왜곡 그리고 다양한 조명 조건 둥은 얼굴 검출 및 추적, 요소 검출에 있어 여전히 큰 장애가 되고 있다. 이에 따라, 본 논문에서는 실시간 화상 통신을 위한 새로운 얼굴 영역 검출 및 추적 알고리즘과 검출된 얼굴 영역에서 효과적으로 눈 영역을 검출할 수 있는 알고리즘을 제안한다. 제안하는 얼굴 검출 알고리즘은 복잡한 배경과 다양한 조명 조건에 관계없이 얼굴을 검출하고 추적하기 위해 웨이블릿 변환된 세 종류의 부 영역을 이용하여 얼굴 형판을 생성하고 웨이블릿 변환된 입력 영상과의 유사도를 측정하여 얼굴을 검출한다. 특히 다양한 조명 조건을 극복하기 위해 최소-최대 정규화와 히스토그램 평활화를 혼합 적용하여 매우 밝거나, 매우 어두운 영상에서의 얼굴 오 검출 및 놓침을 줄일 수 있었으며 세 가지 크기의 얼굴 형판을 이용함으로써 입력 영상에 존재하는 다양한 크기의 얼굴도 검출할 수 있었다. 또한 효과적인 얼굴 추적 알고리즘을 통해 다음 프레임에서의 얼굴 위치를 예측하고 예측된 얼굴 위치를 중심으로 탐색 영역을 정해 형판 정합을 수행함으로써 얼굴 검출률을 높이면서 수행 시간도 단축시킬 수 있었다. 수직, 수평방향 투영을 이용한 합리적인 눈 검출 알고리즘은 어두운 조명이나 부정확한 얼굴 영역에서도 만족스러운 결과를 보여주었다.26$이었으며, 점차 감소, 다시 증가하여 담금 10일에는 $3.42{\sim}3.69$이었다. 시험구별로는 KKR이 가장 낮았다. 총산은 담금 1일에 $0.29{\sim}0.82%$였으며 담금 6일에 $1.75{\sim}2.53%$로 최고값을 나타내었으며 그 후 감소하여 담금 10일에는 $1.61{\sim}2.34%$였다. 시험구간에는 KKR, SKR이 비교적 높은 값을 나타내었다. 무기질 함량은 발효기간이 경과할수록 증하였고 Ca는 $2.95{\sim}36.76$, Cu는 $0.01{\sim}0.14$, Fe는 $0.71{\sim}3.23$, K는 $110.89{\sim}517.33$, Mg는 $34.78{\sim}122.40$, Mn은 $0.56{\sim}5.98$, Na는 $0.19{\sim}14.36$, Zn은 $0.90{\sim}5.71ppm$을 나타내었으며, 시험구별로 보면 WNR, BNR구가 Na만 제외한 다른 무기성분 함량이 가장 높았다.O to reduce I/O cost by reusing data already present in the memory of other nodes. Finally, chunking and on-line compression mechanisms are included in both models. We demonstrate that we can obtain significantly high-performance

휴대폰에서의 홍채인식을 위한 고속 홍채검출에 관한 연구 (A Study on Fast Iris Detection for Iris Recognition in Mobile Phone)

  • 박현애;박강령
    • 대한전자공학회논문지SP
    • /
    • 제43권2호
    • /
    • pp.19-29
    • /
    • 2006
  • 최근 휴대폰에서 개인 정보 보안의 중요성이 대두되고 있으며, 이에 따라 생체인식 기능이 내장된 휴대폰에 관심이 집중되고 있다. 그러므로 본 논문에서는 휴대용 기기에 홍채인식기술을 적용하기 위한 방법을 제안한다 기존의 홍채 인식 알고리즘에서는 고 배율의 줌 렌즈(zoom lens)와 초점렌즈(focus lens)를 사용하여 홍채인식에 사용될 확대된 홍채영상을 획득하였다. 이와 같이 이 전에 휴대폰에 홍채인식기술을 적용하기 위해서는 줌 렌즈와 초점렌즈를 추가 장착하여야 했으며, 이는 가격 상승과 부피 증가의 문제를 발생시켰다. 그러나 최근 휴대폰의 멀티미디어 기기 융 복합 추세로 인해 휴대폰 내에 장착된 메가픽셀 카메라(Mega-pixel Camera)의 성능이 급속히 발전함에 따라, 고 배율의 줌 렌즈 및 초점렌즈(zoom & focus lens) 없이도 확대된 홍채영상의 획득이 가능하게 되었다. 즉, 메가 픽셀 카메라 폰을 사용하여 사용자로부터 원거리에서 취득한 얼굴영상에서의 홍채영역이 홍채인식을 수행하기 위한 충분한 픽셀정보를 가지게 되었다. 본 논문에서는 이러한 얼굴영상에서 각막에 반사된 조명 반사광을 기반으로 휴대폰에서의 홍채인식을 위한 고속 홍채검출 방법을 제안한다. 또한 눈, 카메라, 조명 모델을 기반으로 각막에 반사된 조명반사광의 밝기와 크기를 추정하는 이론적 배경을 제안하며, 입력영상에서 태양광의 존재 유무와 광학적으로 또는 피사체의 움직임에 의해 반사된 흐림 현상 (Optical & Motion blur)을 판별하기 위해 조명을 연속적으로 On/Off 시키는 방법을 제안한다. 실험결과, 삼성 SCH-S2300(150MHz의 ARM 9 CPU) 휴대폰에서 홍채 영역 추출 총 수행시간은 평균 65ms이었고, 홍채 검출 성공률은 태양광이 존재하지 않는 실내에서 99%, 태양광이 존재하는 실외에서 98.5%였다._{SSH}$ 전압이 약 1.1V 일 때까지 오류 없이 동작함을 관측하였다. 본 논문의 SRAM 스위칭 전력감소는 I/O의 bit width가 증가하면 더욱 더 중요해질 것으로 예상할 수 있다.어 자료 형태를 32.4%의 순으로 개발을 희망하였다. 다섯째, 주로 사용하는 웹 사이트는 가정과 교사나 교과 연구회에서 운영하는 사이트를 46.2%, 에듀넷이나 한국교육학술정보원(KERIS) 사이트는 30.8%가 활용하는 것으로 나타났다. 또한 학습 자료 개발은 제작 능력이 있는 가정과 교사들이 교과 연구회를 만들어 공동으로 제작 할 수 있기를 희망하고 있었다. 시대적인 변화와 교육 환경의 변화로 웹 콘텐츠 자료를 활용한 교수 학습 방법이 중요한 도구로 인식되고 있다. 특히 가정 교과는 일상생활에 필요한 기초적인 경험을 실생활과 접목시켜 종합적으로 다루는 교과이기 때문에 다양하고 창의적인 콘텐츠가 절실히 요구되는 실정이다. 본 연구의 결과들에서 제시한 여러 가지 사항들을 고려하여 웹 콘텐츠 자료 활용과 개발이 이루어진다면 보다 효율적인 교수 학습이 이루어질 것으로 기대된다.변연계통과 대뇌겉질 전체에 영향을 미칠 것으로 여겨지는데, 본 실험에서는 네 종류의 바닥핵들, 즉 꼬리핵, 줄무늬체바닥핵, 중격옆핵 및 중격핵과 관련된 신경연접들을 관찰하였으며, 그 결과를 문헌 고찰한 결과 변연계통과 줄무늬체계통이 앞뇌의 바닥에 있는 신경핵들에서 형태학적 교차연결을 통해 정서와 마음의 상태를 행동과 대응으로 표현하는 중요한 신경회로가 존재함을 제안하였다.腎臟組織)에서 더많이 발생되었다. 틸라피아의 신사구체(腎絲球體)는 담수(淡水)에서 10%o의 해수(海水)로 이주된지 14일(日) 이후에 신장(腎臟)에서 수축된 것으로 나타났다. 30%o의 해수(海水)에 적응(適應)된 틸라피아의 평균 신사구체(腎絲球體)의 면적은 담수(淡水)에 적응된 개체의 면적보다

질감 필터를 이용한 눈 검출 (Eye Detection Using Texture Filters)

  • 박찬우;김용민;박기태;문영식
    • 전자공학회논문지CI
    • /
    • 제46권6호
    • /
    • pp.70-78
    • /
    • 2009
  • 본 논문에서는 눈 영역의 질감 및 구조적 특성을 고려한 두 가지 질감 필터들을 이용하여 눈 영역을 효과적으로 검출하는 방법을 제안한다. 인간의 눈 형태는 외형적으로 수평 방향으로 길고, 원형의 눈동자로 구성된 구조적 특성을 갖고 있다. 이 두가지 특성을 효율적으로 기술하는 질감 필터(Texture Filters)들로서 가보 필터(Gabor Filter)와 ART 기술자(Descriptor)가 사용된다. 가보 필터는 방향성 정보를 포함하고 있기 때문에, 수평 방향의 눈 형태 특성을 효과적으로 검출할 수 있다. 그리고 ART 기술자는 원형 모양의 특성을 갖는 눈동자를 검출하기 위해 사용되어진다. 본 논문에서는 효과적인 눈 영역을 검출하기 위하여, 첫 번째 단계에서 AdaBoost 분류기를 이용하여 얼굴 영역을 검출한다. 두 번째 단계는 검출된 얼굴 영역에 대해서 지역적인 조명 정규화 과정을 수행한다. 세 번째 단계에서는 두 가지의 질감 필터들을 이용하여 수평 방향과 원형 형태의 구조적 특성을 갖는 눈 후보영역을 검출하고, 마지막 단계에서는 검출된 눈 후보영역들 중에서 얼굴의 구조적인 특성을 가장 잘 표현하는 영역을 최적화된 눈 영역으로 추출한다. 제안한 알고리즘의 성능을 실험적으로 확인한 결과, 제안된 눈 검출 방법은 기존의 방법에 비해 정확률에서 2.9~4.4%의 향상된 검출 결과를 보인다.

특수재난 대응 환자 격리 이송 장비의 효율성 및 편의성 평가: 마네킹시뮬레이션 연구 (Efficacy and Usability of Patient Isolation Transport Module for CBRN Disaster : A Manikin Simulation Study)

  • 김기홍;홍기정;함승희;최진우
    • 한국화재소방학회논문지
    • /
    • 제32권3호
    • /
    • pp.116-122
    • /
    • 2018
  • 본 연구의 목적은 개발 중인 화학, 생물학, 방사능 및 원자력 특수재난 대응 격리 이송 장비의 효율성과 사용 용이성을 평가하는 것이다. 상기 개발 장비는 자체 개발한 격리, 이송, 환자 감시 모듈을 통합하여 제작하였다. 응급구조사를 대상으로 한 마네킹을 이용한 무작위 교차 실험(또는 시뮬레이션)연구이며, 모든 연구대상자는 기존 장비와 특수재난 대응 격리 이송 장비의 시제품을 교대로 사용하였다. 생체신호 변화 검출 소요 시간과 치료 적용 소요 시간으로 효율성을 평가하였고 각 감시장치, 이송카트, 격리 장치 편의성에 대한 설문조사를 통해 사용 편의성으로 평가하였다. 총 12명의 응급구조사가 연구에 참여하였고 특수재난 대응 격리 이송 장비 군의 저산소증 검출 시간이 3.5초(2.5-3.9)로 기존 장비군의 4.9초(3.8-3.9)보다 유의하게 짧았다(p < 0.05). 심전도 변화 감지 소요 시간 및 안면 마스크 산소 공급 소요 시간의 감소 경향은 있었으나 통계적 유의성은 관찰되지 않았다. 특수재난 대응 격리 이송 장비 군의 환자 감시 장치의 전반적 만족도도 특수재난 대응 격리 이송 장비 군이 4점(3.5-5)으로 기존 장비군의 3점(3-3)에 비해 높았다(p < 0.05). 특수재난 대응 격리 이송 장비 사용군이 저산소증 검출 시간이 짧았으며 기존장비에 비해 환자 감시 장치의 전반적 만족도가 높은 것을 확인하였다.

POSTIT정보 이용한 실시간 눈동자 시선 추적 (Using POSTIT Eye Gaze Tracking in Real-time)

  • 김미경;최연석;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 춘계학술대회
    • /
    • pp.750-753
    • /
    • 2012
  • 본 논문은 얼굴에서 왼쪽 눈, 오른쪽 눈, 입, 코의 위치를 검출하고 POSIT(Pose from Orthography and Scaling with ITterations) 알고리즘을 이용하여 3차원 객체의 위치와 방향을 알아내는 방법을 제안한다. 왼쪽, 오른쪽 눈을 검출하는 단계에서는 사람의 얼굴에서 눈이 가지는 위상학적 특징과 형태학적 특징을 이용한다. 위상학적 특징을 기반으로 눈의 대략적인 위치를 구하고 형태학적인 특징을 이용하여 눈동자를 검출한다. 4개의 특징점 검출 후 POSTIT를 이용하여 얼굴의 회전 정도를 찾아 눈의 시선 방향을 찾았다.

  • PDF

다중크기와 다중객체의 실시간 얼굴 검출과 머리 자세 추정을 위한 심층 신경망 (Multi-Scale, Multi-Object and Real-Time Face Detection and Head Pose Estimation Using Deep Neural Networks)

  • 안병태;최동걸;권인소
    • 로봇학회논문지
    • /
    • 제12권3호
    • /
    • pp.313-321
    • /
    • 2017
  • One of the most frequently performed tasks in human-robot interaction (HRI), intelligent vehicles, and security systems is face related applications such as face recognition, facial expression recognition, driver state monitoring, and gaze estimation. In these applications, accurate head pose estimation is an important issue. However, conventional methods have been lacking in accuracy, robustness or processing speed in practical use. In this paper, we propose a novel method for estimating head pose with a monocular camera. The proposed algorithm is based on a deep neural network for multi-task learning using a small grayscale image. This network jointly detects multi-view faces and estimates head pose in hard environmental conditions such as illumination change and large pose change. The proposed framework quantitatively and qualitatively outperforms the state-of-the-art method with an average head pose mean error of less than $4.5^{\circ}$ in real-time.