This study is to help make-up and coordination for image-making after analysis of facial color and shape of elderly women. The data was analyzed 55-75 years old 212 elderly women's face color and pictures by means of SPSS 12.0 statistics package. On the basis of the colorimetric data on face by Minolta CM2500D, this research considered the analysis of facial color, patternization of facial color and its analysis by age group; for the analysis of facial shape, this research patternized facial shape and analyzed its characteristic using both contour-based facial shape analysis and Kamata facial shape analysis. As for facial color, it was found that the lower age bracket has bright and reddish face, looking fine, while the higher age bracket has a conspicuously yellowish face, looking bad. The community of facial color is classified as 3 types and it was found out that the facial color of the subjects belonging to Type 3, whose L value is the largest, looked the brightest; the face of the subjects belonging to Type 2, whose a value is the largest, was much tinged with red, and the face of the subjects belonging to Type 1, whose b value is the largest were tinged with yellow. According to the analysis of facial shape, there appeared oval & long forms in the classification by contour, while there appeared a lot of downward-directed power and inner-directed power in the classification by Kamata, which is believed to reflect the phenomenon that their chin line becomes roundish and the facial length also tend to be longer due to aging.
This study performed a simultaneous sensory evaluation and color measurement, targeting 136 female university students who live in the Dae-Jeon region. the study measured participants'facial coloration under the condition of available light between 11 AM and 3 PM from Spring (May) to Autumn (October) in 2009. For statistical analysis, descriptive statistics, a member variate analysis, and discriminant analysis were executed using SPSS version 18.0 of the statistics program. The results of this study are as follows. First, as a result of the sensory evaluation, the blue undertone well matched to face type was dominantly distributed among the female university student participants. Second, the forehead showed a type of yellowish coloration and was relatively dark to cheeks. However the cheek displayed a reddish coloration and was relatively bright compared to the forehead from an evaluation of a cheek and forehead color measurement. Third, due to the investigation the of facial coloration variable, a yellowish and reddish chromaticity on the cheek were evident as a variable of facial coloration, which has an influence on the classification of the types of facial color. As a result of the induced discriminant through these two color variables, the yellowish chromaticity appeared as a color variable to have a greater influence than the reddish chromaticity on the cheek.
Objectives: This study aimed to assess a Qi Blood Yin Yang evaluation method systematically and objectively and to identify the correlation between the Qi Blood Yin Yang deficiency pattern (QBYYDP) and facial color. Methods: Thirty-seven participants (17 males, 20 females) were enrolled in this study. Twenty-four (10 males, 14 females) had ages from 40 to over 60, and 13 (7 males and 6 females) were in their twenties. After sufficient rest, facial images were taken with a camera. Based on the results from a questionnaire survey, we divided the participants into five groups: the normal and the Qi-, Blood-, Yin-, and Yang-deficient groups, after which the relationships between the L, 'a', and 'b' values in the Lab color system and the characteristics of the participants in each of the deficient groups were elucidated using a facial color analysis program. Results: The color analysis for Qi-deficient (QD) participants revealed that the L value was fairly decreased in comparison with the normal participants, but the 'a' and 'b' values were almost the same. A comparison between the normal and the Yang-deficient (YaD) groups revealed that the L values were somewhat lower compared to the normal group, but the 'a' and 'b' values were not statistically different. For the Yin-deficient (YiD) group, the L value was slightly lower compared to the normal group, but the 'a' and 'b' values were almost the same and the R values were slightly increased. For the Blood-deficient (BD) group, the L values were slightly increased compared to the normal group, but the 'a' and 'b' values were decreased slightly. Conclusion: This study obtained objective, reliable data for judging the QBYYDP by using facial images and a color analysis program. However, further study with at least 10 or more subjects in each of the deficient groups is necessary to confirm our findings.
Journal of the Korean Society of Clothing and Textiles
/
v.30
no.6
s.154
/
pp.971-980
/
2006
The colors of apparel have a close relationship with the facial color types of consumers. To extract the favorable colors that flatter to consumer's facial color types, the facial colors of Korean females were analyzed. With color meter JX-777, 2 points of face were measured and classified into 3 clusters that had similar hue, value and chroma. Other new 10 college girls were measured and 3 subject among them were selected by the criteria that choose new subjects who have the classified facial color types. 175 respondents answered the degree of becomingness of color samples on three subjects. Data were analyzed by K-means cluster analysis, ANOVA and Duncan multiple range test using SPSS Win. 12. Findings were as follows: 1) 324 subjects who had YR facial colors were classified into 3 facial color groups. The average facial color Type 1 was 4.82YR 6.47/3.70 and composed 48.88% among total observations. Type 2 was 5.99YR 6.12/4.12 and 30.25%. Type 3 was 5.15YR 7.07/4.97 and 20.99% respectively. 2) Favorable colors for Type 1 were 18 colors that belonged to 'a' group from among colors that were divided into a, b, c group by Duncan post hoc test. 3) Type 2 showed that this type had many unfavorable colors. Unfavorable colors were 18 colors that belonged to 'c' by Duncan test. 4) Type 3 showed that black is the most favorable color and 18 colors were at middle level, which belonged to 'b' from among 18 colors that were divided into a, b, and c by Duncan test.
Journal of the Korean Society of Clothing and Textiles
/
v.30
no.2
s.150
/
pp.316-325
/
2006
The colors of apparel are getting more important to give the differentiated character on fiber and fabrics. This study was to extract the favorable colors that become to facial color types. Research was carried out to classify the facial colors into several similar facial color groups. With JX-777, 2 points of face: forehead and cheek, were measured and classified into 3 facial color types. Sample size was 418 Korean adult males and other 15 of new males subjects. New chosen 3 subjects who had the classified facial color types, wore silver gown and black hat on his head to minimize the interaction of the clothe color an hair. The 40 standardized color samples were used to extract the favorable colors. 187 respondents answered the degree of becomingness of color samples on 3 facial color types. Data were analyzed by K-means cluster analysis, ANOVA and Duncan multiple range test using SPSS Win. 12. Findings were as follows: 1. 418 subjects who had YR colors were classified into 3 kinds of facial color groups. Type 1 was 4.59YR 5.89/5.12, Type 2 was 5.61 YR 5.41/4.79 and Type 3 was 4.38YR 6.49/4.89 respectively. 2. Favorable colors for Type 1 were 2 colors that belonged to ' a ' group from among colors that were divided into a, b, c group and 18 colors that belonged to ' a ' group from among colors that were divided into a, b group by Duncan post hoc test. 3. Type 2 showed that this type had many unfavorable colors. Unfavorable colors were 16 colors that belonged to ' c ' by Duncan test. 5. Favorable colors for Type 3 were 14 colors that belonged to ' a ' from among colors that were divided into a, b, c and 16 colors that belonged to ' a ' from among colors that were divided into a, b by Duncan test.
Understanding of human emotion has a high importance in interaction between human and machine communications systems. The most expressive and valuable way to extract and recognize the human's emotion is by facial expression analysis. This paper presents and implements an automatic extraction and recognition scheme of facial expression and emotion through still image. This method has three main steps to recognize the facial emotion: (1) Detection of facial areas with skin-color method and feature maps, (2) Creation of the Bezier curve on eyemap and mouthmap, and (3) Classification and distinguish the emotion of characteristic with Hausdorff distance. To estimate the performance of the implemented system, we evaluate a success-ratio with emotional face image database, which is commonly used in the field of facial analysis. The experimental result shows average 76.1% of success to classify and distinguish the facial expression and emotion.
Human face detection has many applications such as face recognition, face or facial feature tracking, pose estimation, and expression recognition. We present a new method for automatically segmentation and face detection in color images. Skin color alone is usually not sufficient to detect face, so we combine the color segmentation and shape analysis. The algorithm consists of two stages. First, skin color regions are segmented based on the chrominance component of the input image. Then regions with elliptical shape are selected as face hypotheses. They are certificated to searching for the facial features in their interior, Experimental results demonstrate successful detection over a wide variety of facial variations in scale, rotation, pose, lighting conditions.
In this paper we present a facial region detection algorithm for real-time image with complex background and various illumination using spatial and temporal methods. For Detecting Human region It used summation of Edge-Difference Image between continuous image sequences. Then, Detected facial candidate region is vertically divided two objected. Non facial region is reduced using Analysis of Major Color Component. Non facial region has not available Major Color Component. And then, Background is reduced using boundary information. Finally, The Facial region is detected through horizontal, vertical projection of Images. The experiments show that the proposed algorithm can detect robustly facial region with complex background various illumination images.
Ka, Min-Kyoung;Kim, Mi-Hye;Kim, Bong-Hyun;Kim, Hee-Dai;Cho, Dong-Uk
Journal of the Korea Academia-Industrial cooperation Society
/
v.15
no.5
/
pp.2671-2677
/
2014
These days, there is increasing those who like spicy food, people release stress by eating spicy food. But, when you eat spicy food, there is a difference but, we visually can be found red facial color to change. In this paper, when you eat spicy food, we carried out experiment which comparison and analysis color change of facial area depending on Sasang constitutional type. To this end, we organized test subject group by Sasang constitutional type according to survey result for Sasang constitutional type. And then we carried out interrelationship analysis between spicy food and facial color depending on facial color to apply Lab color system based on facial image which is before and after eat a hot spicy pepper.
*In this paper, we propose a real-time face tracking system using an adaptive face detector and a tracking algorithm. An image is divided into the regions of background and face candidate by a real-time updated skin color identifying system in order to accurately detect facial features. The facial characteristics are extracted using the five types of simple Haar-like features. The extracted features are reinterpreted by Principal Component Analysis (PCA), and the interpreted principal components are processed by Support Vector Machine (SVM) that classifies into facial and non-facial areas. The movement of the face is traced by Kalman filter and Mean shift, which use the static information of the detected faces and the differences between previous and current frames. The proposed system identifies the initial skin color and updates it through a real-time color detecting system. A similar background color can be removed by updating the skin color. Also, the performance increases up to 20% when the background color is reduced in comparison to extracting features from the entire region. The increased detection rate and speed are acquired by the usage of Kalman filter and Mean shift.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.