• Title/Summary/Keyword: face volume

Search Result 264, Processing Time 0.024 seconds

On the Derivation of Safety Requirements and Specifications based Integrated System Operation Scenario for the Development of Unmanned Courier Storage Device Platform in Urban Areas

  • Lee, Sang Min;Park, Jae Min;Kim, Joo Uk;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.103-111
    • /
    • 2021
  • In modern society, digital lifestyles are spreading to minimize contact with people and to receive contactless information. The spread trend has established an unmanned distribution system in which transactions through contactless technologies such as kiosks and chatbots are activated in face-to-face transactions with sellers and consumers. In order to streamline logistics supply worldwide, digital new deal based joint logistics hubs, unmanned courier storage platforms, and fresh logistics based last mile services have been developed into unmanned logistics systems, focusing on the intelligent logistics system automation process. Unmanned courier storage system installed in urban areas and home to daily logistics where volume is concentrated are provided with fresh logistics services through cold chain and receiving freights in contactless environments. Development is also underway to minimize safety accidents caused by courier services, such as managing various information based on the integrated control system. This paper defines the concept of integrated operation for the development of a platform for contactless unmanned courier storage device developed into next-generation logistics system. In addition, we intend to develop systems engineering-based output for deriving safety requirements and specifications by identifying risk sources that may occur in the operational scenario. Therefore, the goal is to establish a foundation for safety and reliability between interfaces of logistics systems to be installed in apartment and subway station environments that want to provide unmanned logistics services to various consumers.

Vibration analysis of damaged core laminated curved panels with functionally graded sheets and finite length

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Xu, Yi-Peng;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.477-496
    • /
    • 2021
  • The main objective of this paper is to study vibration of sandwich open cylindrical panel with damaged core and FG face sheets based on three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution and boundary conditions. It is seen that for the large amount of power-law index "P", increasing this parameter does not have significant effect on the non-dimensional natural frequency parameters of the FG sandwich curved panel. Results indicate that by increasing the value of isotropic damage parameter "D" up to the unity (fully damaged core) the frequency would tend to become zero. One can dictate the fiber variation profile through the radial direction of the sandwich panel via the amount of "P", "b" and "c" parameters. It should be noticed that with increase of volume fraction of fibers, the frequency parameter of the panels does not increase necessarily, so by considering suitable amounts of power-law index "P" and the parameters "b" and "c", one can get dynamic characteristics similar or better than the isotropic limit case for laminated FG curved panels.

TBM mechanical characteristics for NFGM in mechanized tunnelling

  • Pill-Bae Hwang;Beom-Ju kim;Seok-Won Lee
    • Geomechanics and Engineering
    • /
    • v.38 no.5
    • /
    • pp.477-486
    • /
    • 2024
  • The process of inspecting and replacing cutting tools in a shield tunnel boring machine (TBM) is called cutterhead intervention (CHI) (Farrokh and Kim 2018). Since CHI is performed by a worker who enters the chamber in TBM, the worker is directly exposed to high water pressure and huge water inflow, especially in areas with high ground water levels, causing health problems for the worker and shortening of available working hours (Kindwall 1990). Ham et al. (2022) proposed a method of reducing the water pressure and water inflow by injecting a grout solution into the ground through the shield TBM chamber, and named it the new face grouting method (NFGM). In this study, the TBM mechanical characteristics including the injection pressure of the grout solution and the cutterhead rotation speed were determined for the best performance of the NFGM. To find the appropriate injection pressure, the water inflow volume according to the injection pressure change was measured by using a water inflow test apparatus. A model torque test apparatus was manufactured to find the appropriate cutterhead rotation speed by investigating the change in the status of the grout solution according to the rotation speed change. In addition, to prove the validity of this study, comprehensive water inflow tests were carried out. The results of the tests showed that the injection pressure equal to overburden pressure + (0.10 ~ 0.15) MPa and the cutterhead rotation speed of 0.8 to 1.0 RPM are the most appropriate. In the actual construction site, it is recommended to select an appropriate value within the proposed range while considering the economic feasibility and workability.

High-Velocity Impact Experiment on Impact Resistance of Steel Fiber-Reinforced Concrete Panels with Wire Mesh (와이어매쉬와 강섬유로 보강된 콘크리트 패널의 내충격성 규명을 위한 고속충격실험)

  • Kim, Sang-Hee;Hong, Sung-Gul;Yun, Hyun-Do;Kim, Gyu-Yong;Kang, Thomas H.K.
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.103-113
    • /
    • 2015
  • This paper studies impact performance of wire-mesh and steel fiber-reinforced concrete based on high-velocity impact experiments using hard spherical balls. In this experimental study, panel specimens were tested with various parameters such as steel fiber volume fraction, presence/absence of wire mesh, panel thickness, impact velocity, and aggregate size for the comparison of impact resistance performance for each specimen. While improvement of the impact resistance for reducing the penetration depth is barely affected with steel fiber volume fraction, the impact resistance to scabbing and perforation is improved substantially. This was due to the fact that the steel fiber had bridging effects in concrete matrix. The wire mesh helped minimizing the crater diameter of front and back face and enhanced the impact resistance to scabbing and perforation; however, the wire mesh did not affect the penetration depth. The wire mesh also reduced the bending deformation of the specimen with wire mesh, though some specimens had splitting bond failure on the rear face. Additionally, use of 20 mm aggregates is superior to 8 mm aggregates in terms of penetration depth, but for reducing the crater diameter on front and back faces, the use of 8 mm aggregates would be more efficient.

A Study on the Improvement of Safety Management by Port Logistics Industry Using Bow-Tie Analysis (Bow-Tie 분석기법을 이용한 항만물류산업 안전관리 개선방안에 관한 연구)

  • KIM, Do-Yean;SIM, Min-Seop;Lee, Jeong-Min;SHIN, Yong-Ran
    • Journal of Navigation and Port Research
    • /
    • v.46 no.1
    • /
    • pp.57-72
    • /
    • 2022
  • The recent increase in international trade volume and explosive increase in cargo volume due to the non-face-to-face society are leading to an increase in risk exposure and safety accidents in the port logistics industry. Consequently, as the atmosphere and consensus on safety are spreading throughout the society, various safety laws are being enacted by the industry. Nevertheless, according to the industrial accidents status analysis by the Ministry of Employment and Labor, the average annual number of injured persons increased by 11.1% and the number of deaths by 4.0% from 2015 to 2019. This means that special attention should be paid to possible future risks and preventive measures for major causes of accidents should be established. Therefore, in this study, risk assessment was conducted based on 5,028 accident cases that were reported by the Korea Occupational Safety and Health Agency for 5 years, from 2016 to 2020, and major risk factors for each industry were derived, and then bow-tie analysis was conducted to perform the risk assessment; Further, the study aimed to derive the causes and preventive measures from the risk factors.

항만하역업 안전관리 개선방안에 관한 연구

  • 심민섭;이정민;김율성
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.389-390
    • /
    • 2022
  • Recently, Recently, the increase in international trade volume and the explosive increase in cargo volume due to the non-face-to-face society are leading to an increase in risk exposure and safety accidents in the port industry. In addition, as the Serious Disaster Punishment Act came into effect on January 27, 2021, various guidelines and laws to protect safety and life in port terminals are being enacted. However, despite these efforts, medium-to-large safety accidents in the port terminal industry continue to occur. According to the Korea Occupational Safety and Health Agency, from 2016 to 2019, the number of casualties in the port handling industry increased by 4.2%. For effective follow-up management of port accidents or the preparation of related safety laws/systems, a risk analysis in consideration of the cause and damage of the accident must be conducted first, so that realistic accident reduction and prevention measures can be established. Therefore, in this study, major risk factors and preventive measures were derived by conducting risk assessment based on 1,039 cases of port terminal accidents collected by the Korea Occupational Safety and Health Agency for 5 years from 2016 to 2022. After that, the priorities for preventive measures were determined through IPA analysis, Borich needs analysis, and The Locus For Focus analysis.

  • PDF

A study on the Logical Reclassification of Parcel Service Tariffs (택배요금기준의 합리적 재설정에 관한 연구)

  • Cho, Yoon-Sung;Lee, Tae-Hwee
    • Journal of Distribution Science
    • /
    • v.10 no.5
    • /
    • pp.45-55
    • /
    • 2012
  • In Korea, the parcel delivery service was launched officially in 1992, and the market has grown to 13.2 billion units, or 3.5 trillion won, as of 2011. The service companies accept small packages under 30 kg and deliver them on the next day in most domestic areas. This service plays an important role in business and personal activities. The parcel service companies have themselves designed the tariff for the delivery service based on two criteria: weight and the sum of three side lengths. Further, the tariff is graded in steps of three or four rate structures based on size (small, medium, large, and extra-small). However, the basic freight rate is generally decided according to the cargo's weight or measurement size, and an extra rate is added according to some factors (handling, stowability, liability, and so on). The parcel service tariff adopted by the companies is illogically designed, and this study was carried out to assess the need for redesigning the tariff structure. The cargo volume cannot be logically reflected by three side lengths. For example, two parcels measuring 160 cm based on three side lengths may have different volumes, one measuring 0.152 cbm (53.33 cm × 53.33 cm × 53.34 cm) and the other 0.05 cbm (100 cm × 50 cm × 10 cm). A small package of less than120 cm (sum of three side lengths) may have a volume of as much as 0.064 cbm (40 cm × 40 cm × 40 cm). Sample comparison showed that 17% of medium-size parcels (based on the sum of three side lengths) are small-volume packages, 24% of large-size parcels are small- or medium-volume packages, and 40% of extra-big-size parcels are big- or under-size packages. Therefore, if parcel service companies rate their services for volume cargo based on the three side lengths standard, users may have to pay higher than normal rates, particularly because a large percentage of parcels are volume cargo. According to this study, the average weight per 1 cbm is less than 300 kg. Therefore, users face an increasing risk of paying higher than logical freight charges. Generally, transportation companies are called "public interest enterprises," and parcel service companies operate as postal services. Public interest enterprises must provide the delivery service to all customers without discrimination at a reasonable service level and logical service charges. Therefore, parcels service tariffs must be designed and adopted logically. In this study, freight theories and prior research findings were used to consider the importance of freight rates, and distortion of parcel service rates based on the three side lengths system was verified through regression analysis of a parcel sample and sample comparison. In conclusion, volume sizes based on three side lengths have a higher correlation to the rate level than does the sum of three side lengths. Further, compared to the sum of three side lengths, volume size has a higher correlation to cargo weight, which is the most basic factor determining transportation cost. Therefore, the existing parcel service tariff should be changed to weight- and volume-based rates, and the tariff must be graded in steps of 8 to 10 higher rate structures for a logical freight schedule based on service cost.

  • PDF

Three-dimensional Assessment of Facial Soft Tissue after Orthognathic Surgery in Patients with Skeletal Class III and Asymmetry

  • Lee, Jong-Hyeon;Choi, Dong-Soon;Cha, Bong-Kuen;Park, Young-Wook;Jang, Insan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.6
    • /
    • pp.360-367
    • /
    • 2013
  • Purpose: The purpose of this study was to perform three-dimensional (3D) assessment of facial soft tissue in patients with skeletal Class III and mandibular asymmetry after orthognathic surgery. Methods: Samples consisted of 3D facial images obtained from five patients with A point-nasion-B point angle less than 2 degrees, and more than 5 mm of menton deviation. All patients had been treated at Gangneung-Wonju National University Dental Hospital from 2009 to 2012. They had undergone orthognathic surgery of Lefort I, and sagittal split osteotomy for correction of skeletal deformity, and orthodontic treatment. Facial scanning was performed before treatment (T1) and post-surgical orthodontic treatment (T2). Linear and angle variables of soft tissue landmarks, antero-posterior facial depth, and facial volume were measured. Results: No significant differences in width of the alar base, mouth width, and nasal canting were observed between T1 and T2. However, lip deviation, menton deviation, alar canting, lip canting, and menton deviation angle were significantly reduced at T2. Antero-posterior facial depth on the axial plane parallel to the left cheilion was significantly reduced on the deviated side and significantly increased on the non-deviated side at T2. Volume of the lower lateral and lower medial parts of the face was reduced on the deviated side, and volume of upper lateral and lower lateral parts on the non-deviated side was significantly increased at T2. Conclusion: After orthognathic surgery, facial asymmetry of soft tissue was improved following skeletal changes, especially the mandibular region. Although the length of the alar base and mouth width did not change, lip and soft tissue menton were displaced to the medial side after treatment. Facial depth also became symmetric after treatment. Facial volume showed a decrease on the lower part of the deviated side and that on lateral parts of the non-deviated side showed an increase after treatment.

Venture Capital Activities and Financing of High-tech Ventures in Korea: Lessons from Foreign Experiences (벤처캐피탈 활동과 벤처기업의 자금조달: 해외 주요국으로부터의 교훈)

  • Kim, KyungKeun;Kutsuna, Kenji
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.9 no.1
    • /
    • pp.33-50
    • /
    • 2014
  • Though South Korea has world-class volume of Venture Capital Investment, as a share of GDP, early stage venture investments are still short, and investments are concentrated in high technology area and Capital area. Because of the high barriers to entry of the new IPO and M&A market, the venture capital companies undergo difficulties in profit. High-tech ventures face difficulties in raising money from outside investors due to information asymmetry between venture investors and venture companies. To resolve these problems, developed countries's government make a co-funding investment scheme with private sectors and design incentive mechanism such as receiving knowledge of the reputable investors' joint venture. Korean central and local government can benchmark those of things. For example, the expansion of the investment volume with private sector, region-specific matching fund and venture capital's exit path diversification such as M&A through the establishment of a business venture eco-system. At the same time, venture companies are to make an efforts to enhance the ability of screening for venture companies and the value for investment activities through a joint venture investments.

  • PDF

Development of Strength Estimation and Design System of Power Transmission Bevel Gears(I) -A Disign Method Based on Strength and Durability in AGMA Standards- (동력전달용 베벨기어의 강도평가 및 설계시스템 개발 (1) -AGMA규격 강도기준설계법-)

  • 정태형;변준형;김태형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.591-599
    • /
    • 1994
  • A design system for power transmission bevel gears(straight, zerol, and spiral) is developed, in which the strength and durability of bevel gears can be estimated and the size of bevel gears can be minimized by introducing optimal techniques. The size of bevel gear pair as the object function to be minimized is the volume of equivalent spur gear pair at mean normal section, and the design variables to be determined are considered as the number of teeth, face width, diametral pitch, and spiral angle in spiral bevel gear. The strength(bending strength, pitting resistance) according to the AGMA standards, geometrical quantities, and operating characteristics(interference of pinion, contact ratio, etc.) are considered as the constraints in design optimization. The optimization with these constraints becomes nonlinear problem and that is solved with ALM(Augmented Lagrange Multiplier) method. The developed design method is applied to the example designs of straight, zerol, and spiral bevel gears. The design results are acceptable from the viewpoint of strength and durability within the design ranges of all other constraint, and the bevel gears are designed toward minimizing the size of gear pair. This design method is easily applicable to the design of bevel gears used as power transmitting devices in machineries, and is expected to be used for weight minimization of bevel gear unit.