• Title/Summary/Keyword: face pose

Search Result 189, Processing Time 0.033 seconds

Online Face Pose Estimation based on A Planar Homography Between A User's Face and Its Image (사용자의 얼굴과 카메라 영상 간의 호모그래피를 이용한 실시간 얼굴 움직임 추정)

  • Koo, Deo-Olla;Lee, Seok-Han;Doo, Kyung-Soo;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.4
    • /
    • pp.25-33
    • /
    • 2010
  • In this paper, we propose a simple and efficient algorithm for head pose estimation using a single camera. First, four subimages are obtained from the camera image for face feature extraction. These subimages are used as feature templates. The templates are then tracked by Kalman filtering, and camera projective matrix is computed by the projective mapping between the templates and their coordinate in the 3D coordinate system. And the user's face pose is estimated from the projective mapping between the user's face and image plane. The accuracy and the robustness of our technique is verified on the experimental results of several real video sequences.

Pose Invariant View-Based Enhanced Fisher Linear Discriminant Models for Face Recognition

  • Lee, Sung-Oh;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.101.2-101
    • /
    • 2001
  • This paper proposes a novel face recognition algorithm to recognize human face robustly under various conditions, such as changes of pose, illumination, and expression, etc. at indoor environments. A conventional automatic face recognition system consists of the detection and the recognition part. Generally, the detection part is dominant over the other part in the estimating whole recognition rate. So, in this paper, we suggest the view-specific eigenface method as preprocessor to estimate various poses of the face in the input image. Then, we apply the Enhanced FLD Models (EFM) to the result of it, twice. Because, the EFM recognizes human face, and reduces the error of standardization effectively. To deal with view-varying problem, we build one basis vector set for each view individually. Finally, the dimensionalities of ...

  • PDF

Face Image Synthesis using Nonlinear Manifold Learning (비선형 매니폴드 학습을 이용한 얼굴 이미지 합성)

  • 조은옥;김대진;방승양
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.182-188
    • /
    • 2004
  • This paper proposes to synthesize facial images from a few parameters for the pose and the expression of their constituent components. This parameterization makes the representation, storage, and transmission of face images effective. But it is difficult to parameterize facial images because variations of face images show a complicated nonlinear manifold in high-dimensional data space. To tackle this problem, we use an LLE (Locally Linear Embedding) technique for a good representation of face images, where the relationship among face images is preserving well and the projected manifold into the reduced feature space becomes smoother and more continuous. Next, we apply a snake model to estimate face feature values in the reduced feature space that corresponds to a specific pose and/or expression parameter. Finally, a synthetic face image is obtained from an interpolation of several neighboring face images in the vicinity of the estimated feature value. Experimental results show that the proposed method shows a negligible overlapping effect and creates an accurate and consistent synthetic face images with respect to changes of pose and/or expression parameters.

Boosting the Face Recognition Performance of Ensemble Based LDA for Pose, Non-uniform Illuminations, and Low-Resolution Images

  • Haq, Mahmood Ul;Shahzad, Aamir;Mahmood, Zahid;Shah, Ayaz Ali;Muhammad, Nazeer;Akram, Tallha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3144-3164
    • /
    • 2019
  • Face recognition systems have several potential applications, such as security and biometric access control. Ongoing research is focused to develop a robust face recognition algorithm that can mimic the human vision system. Face pose, non-uniform illuminations, and low-resolution are main factors that influence the performance of face recognition algorithms. This paper proposes a novel method to handle the aforementioned aspects. Proposed face recognition algorithm initially uses 68 points to locate a face in the input image and later partially uses the PCA to extract mean image. Meanwhile, the AdaBoost and the LDA are used to extract face features. In final stage, classic nearest centre classifier is used for face classification. Proposed method outperforms recent state-of-the-art face recognition algorithms by producing high recognition rate and yields much lower error rate for a very challenging situation, such as when only frontal ($0^{\circ}$) face sample is available in gallery and seven poses ($0^{\circ}$, ${\pm}30^{\circ}$, ${\pm}35^{\circ}$, and ${\pm}45^{\circ}$) as a probe on the LFW and the CMU Multi-PIE databases.

Research Trends for Deep Learning-Based High-Performance Face Recognition Technology (딥러닝 기반 고성능 얼굴인식 기술 동향)

  • Kim, H.I.;Moon, J.Y.;Park, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.4
    • /
    • pp.43-53
    • /
    • 2018
  • As face recognition (FR) has been well studied over the past decades, FR technology has been applied to many real-world applications such as surveillance and biometric systems. However, in the real-world scenarios, FR performances have been known to be significantly degraded owing to variations in face images, such as the pose, illumination, and low-resolution. Recently, visual intelligence technology has been rapidly growing owing to advances in deep learning, which has also improved the FR performance. Furthermore, the FR performance based on deep learning has been reported to surpass the performance level of human perception. In this article, we discuss deep-learning based high-performance FR technologies in terms of representative deep-learning based FR architectures and recent FR algorithms robust to face image variations (i.e., pose-robust FR, illumination-robust FR, and video FR). In addition, we investigate big face image datasets widely adopted for performance evaluations of the most recent deep-learning based FR algorithms.

Recognition method using stereo images-based 3D information for improvement of face recognition (얼굴인식의 향상을 위한 스테레오 영상기반의 3차원 정보를 이용한 인식)

  • Park Chang-Han;Paik Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.3 s.309
    • /
    • pp.30-38
    • /
    • 2006
  • In this paper, we improved to drops recognition rate according to distance using distance and depth information with 3D from stereo face images. A monocular face image has problem to drops recognition rate by uncertainty information such as distance of an object, size, moving, rotation, and depth. Also, if image information was not acquired such as rotation, illumination, and pose change for recognition, it has a very many fault. So, we wish to solve such problem. Proposed method consists of an eyes detection algorithm, analysis a pose of face, md principal component analysis (PCA). We also convert the YCbCr space from the RGB for detect with fast face in a limited region. We create multi-layered relative intensity map in face candidate region and decide whether it is face from facial geometry. It can acquire the depth information of distance, eyes, and mouth in stereo face images. Proposed method detects face according to scale, moving, and rotation by using distance and depth. We train by using PCA the detected left face and estimated direction difference. Simulation results with face recognition rate of 95.83% (100cm) in the front and 98.3% with the pose change were obtained successfully. Therefore, proposed method can be used to obtain high recognition rate with an appropriate scaling and pose change according to the distance.

An Integrated Face Detection and Recognition System (통합된 시스템에서의 얼굴검출과 인식기법)

  • 박동희;이규봉;이유홍;나상동;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.165-170
    • /
    • 2003
  • This paper presents an integrated approach to unconstrained face recognition in arbitrary scenes. The front end of the system comprises of a scale and pose tolerant face detector. Scale normalization is achieved through novel combination of a skin color segmentation and log-polar mapping procedure. Principal component analysis is used with the multi-view approach proposed in[10] to handle the pose variations. For a given color input image, the detector encloses a face in a complex scene within a circular boundary and indicates the position of the nose. Next, for recognition, a radial grid mapping centered on the nose yields a feature vector within the circular boundary. As the width of the color segmented region provides an estimated size for the face, the extracted feature vector is scale normalized by the estimated size. The feature vector is input to a trained neural network classifier for face identification. The system was evaluated using a database of 20 person's faces with varying scale and pose obtained on different complex backgrounds. The performance of the face recognizer was also quite good except for sensitivity to small scale face images. The integrated system achieved average recognition rates of 87% to 92%.

  • PDF

An Integrated Face Detection and Recognition System (통합된 시스템에서의 얼굴검출과 인식기법)

  • 박동희;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1312-1317
    • /
    • 2003
  • This paper presents an integrated approach to unconstrained face recognition in arbitrary scenes. The front end of the system comprises of a scale and pose tolerant face detector. Scale normalization is achieved through novel combination of a skin color segmentation and log-polar mapping procedure. Principal component analysis is used with the multi-view approach proposed in[10] to handle the pose variations. For a given color input image, the detector encloses a face in a complex scene within a circular boundary and indicates the position of the nose. Next, for recognition, a radial grid mapping centered on the nose yields a feature vector within the circular boundary. As the width of the color segmented region provides an estimated size for the face, the extracted feature vector is scale normalized by the estimated size. The feature vector is input to a trained neural network classifier for face identification. The system was evaluated using a database of 20 person's faces with varying scale and pose obtained on different complex backgrounds. The performance of the face recognizer was also quite good except for sensitivity to small scale face images. The integrated system achieved average recognition rates of 87% to 92%.

Design of Three-dimensional Face Recognition System Using Optimized PRBFNNs and PCA : Comparative Analysis of Evolutionary Algorithms (최적화된 PRBFNNs 패턴분류기와 PCA알고리즘을 이용한 3차원 얼굴인식 알고리즘 설계 : 진화 알고리즘의 비교 해석)

  • Oh, Sung-Kwun;Oh, Seung-Hun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.539-544
    • /
    • 2013
  • In this paper, we was designed three-dimensional face recognition algorithm using polynomial based RBFNNs and proposed method to calculate the recognition performance. In case of two-dimensional face recognition, the recognition performance is reduced by the external environment like facial pose and lighting. In order to compensate for these shortcomings, we perform face recognition by obtaining three-dimensional images. obtain face image using three-dimension scanner before the face recognition and obtain the front facial form using pose-compensation. And the depth value of the face is extracting using Point Signature method. The extracted data as high-dimensional data may cause problems in accompany the training and recognition. so use dimension reduction data using PCA algorithm. accompany parameter optimization using optimization algorithm for effective training. Each recognition performance confirm using PSO, DE, GA algorithm.

Design of RBFNNs Pattern Classifier Realized with the Aid of PSO and Multiple Point Signature for 3D Face Recognition (3차원 얼굴 인식을 위한 PSO와 다중 포인트 특징 추출을 이용한 RBFNNs 패턴분류기 설계)

  • Oh, Sung-Kwun;Oh, Seung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.797-803
    • /
    • 2014
  • In this paper, 3D face recognition system is designed by using polynomial based on RBFNNs. In case of 2D face recognition, the recognition performance reduced by the external environmental factors such as illumination and facial pose. In order to compensate for these shortcomings of 2D face recognition, 3D face recognition. In the preprocessing part, according to the change of each position angle the obtained 3D face image shapes are changed into front image shapes through pose compensation. the depth data of face image shape by using Multiple Point Signature is extracted. Overall face depth information is obtained by using two or more reference points. The direct use of the extracted data an high-dimensional data leads to the deterioration of learning speed as well as recognition performance. We exploit principle component analysis(PCA) algorithm to conduct the dimension reduction of high-dimensional data. Parameter optimization is carried out with the aid of PSO for effective training and recognition. The proposed pattern classifier is experimented with and evaluated by using dataset obtained in IC & CI Lab.