본 논문은 기존의 Haar 유사 특징 기반 얼굴검출 기법의 한계를 보완하는 수평 및 수직방향픽셀 히스토그램 분석 기반의 머리영역 검출 방법을 제안한다. 제안 기법은 배경차감 영상에서 수평과 수직 방향으로 전경 픽셀의 수를 표시하는 픽셀 히스토그램 영상을 생성한 후, 해리스 코너 검출기법을 이용하여 머리 영역을 특징짓는 특징점을 검출한다. 제안한 방법은 기존의 얼굴 특성 기반 검출에 비해 머리를 포함한 몸체의 수직과 수평 픽셀 히스토그램을 이용함으로써 정면 영상뿐만 아니라 측면 및 후면 영상이나 이마가 가려진 입력 영상의 경우에도 머리 영역을 안정적으로 검출하는 결과를 보여주었다.
Nowadays many people have an interest in facial expression and the behavior of people. These are human-robot interaction (HRI) researchers utilize digital image processing, pattern recognition and machine learning for their studies. Facial feature point detector algorithms are very important for face recognition, gaze tracking, expression, and emotion recognition. In this paper, a cascade facial feature point detector is used for finding facial feature points such as the eyes, nose and mouth. However, the detector has difficulty extracting the feature points from several images, because images have different conditions such as size, color, brightness, etc. Therefore, in this paper, we propose an algorithm using a modified cascade facial feature point detector using a convolutional neural network. The structure of the convolution neural network is based on LeNet-5 of Yann LeCun. For input data of the convolutional neural network, outputs from a cascade facial feature point detector that have color and gray images were used. The images were resized to $32{\times}32$. In addition, the gray images were made into the YUV format. The gray and color images are the basis for the convolution neural network. Then, we classified about 1,200 testing images that show subjects. This research found that the proposed method is more accurate than a cascade facial feature point detector, because the algorithm provides modified results from the cascade facial feature point detector.
본 논문은 3차원 얼굴영상으로부터 얼굴의 구성 요소 중의 하나인 코의 종단면과 횡단면을 이용한 특징값과 얼굴의 다를 구성 요소들로부터 구해진 특징값을 이용하여 얼굴을 인식하는 알고리듬을 제안한다. 객체와 배경을 분리하여 얼굴을 추출 및 얼굴의 최고점인 코끝을 찾은 후, 3차원 영상으로부터 얼굴의 주요 특징영역인 코 정보와 얼굴의 종단면 및 횡단면의 정보를 이용하여 회전 보상 전, 후의 특징값을 구한다. 코의 최고점, 코와 이마 사이의 미간점, 코의 밑점, 그리고 코의 앙쪽 끝점을 탐색하여 코의 종단면과 횡단면을 기준으로 한 면적, 깊이, 각도, 체적, 그리고 눈과 입의 간격을 특징값으로 사용하였다. 제안된 방법을 이용한 유사도 비교는 입력과 데이타 베이스에 대하여 각각 두 개의 깊이 데이타에 대해 유클리드 거리를 사용하였으며, 실험결과 임계 순위 값 5위 이내의 인식률이 95.5%로 나타났다.
This paper proposes an integerized approach to solve PCA(Principal Component Analysis) feature extract procedure mainly used for the face recognition. A simple conversion to integer values has the risk to reduce the precision compared to that of the floating points operations. We integerize the PC variables by normalizing with the maximum of them, and show the efficiency of the proposed scheme by comparing the results to those of the float/double precisions. The integerized scheme is expected to be an efficient way for the real-time implementation of PCA's recognition stage, because integer operator is more desirable than floating point ones. Further research is to find a way to implement face detection and to measure the distances from the stored PCs for the full real-time face recognition.
Journal of International Society for Simulation Surgery
/
제1권2호
/
pp.57-61
/
2014
We present a robust 3D facial reconstruction method using a single image generated by face-specific super resolution technique. Based on the several consecutive frames with low resolution, we generate a single high resolution image and a three dimensional facial model based on it. To do this, we apply PME method to compute patch similarities for SR after two-phase warping according to facial attributes. Based on the SRI, we extract facial features automatically and reconstruct 3D facial model with basis which selected adaptively according to facial statistical data less than a few seconds. Thereby, we can provide the facial image of various points of view which cannot be given by a single point of view of a camera.
본 논문에서는 컬러 비디오 시퀀스 상에서 눈과 입에 해당하는 얼굴 특징점을 고속으로 추출하는 방법을 제안한다. 자유로운 움직임을 갖는 얼굴 영역을 안정적으로 추출하기 위해 얼굴 색상 분포를 이용한 색상 변환 영상에 움직임 검출 기법을 적용하여 움직이는 살색 부분만을 효율적으로 검출하는 색상 움직임 개념을 사용하였다. 움직임 정보는 살색의 가능성 정도에 따라 가중치가 주어지며 화소 단위의 움직임 여부를 결정하는 문턱값도 살색의 가능성 정도에 따라 적응적으로 결정된다. 눈의 색상분포와 형태소 연산자를 사용한 움직임 살색 영역에서 눈 후보 영역을 추출하고 눈과 눈썹의 상호 위치 관계를 이용하여 눈의 영역을 최종 결정한다. 입의 영역은 눈의 위치를 기준으로 입 후보 영역을 정하고 색상 히스토그램을 이용하여 입의 영역을 검출한다. 찾아진 눈과 입의 영역에서 정확한 특징점의 위치를 구하기 위해 PCA (Principal Component Analysis)를 사용하였다. 실험 결과 복잡한 배경, 개인적인 편차, 얼굴의 방향과 크기 등에 영향을 받지 않고 고속으로 정확한 얼굴의 특징점을 추출할 수 있었다.
Digital imaging technology has developed into a state-of-the-art IT convergence, composite industry beyond the limits of the multimedia industry, especially in the field of smart object recognition, face - Application developed various techniques have been actively studied in conjunction with the phone. Recently, face recognition technology through the object recognition technology and evolved into intelligent video detection recognition technology, image recognition technology object detection recognition process applies to skills through is applied to the IP camera, the image object recognition technology with face recognition and active research have. In this paper, we first propose the necessary technical elements of the human factor technology trends and look at the human object recognition based spFACS (Smile Progress Facial Action Coding System) for detecting smiles study plan of the image recognition technology recognizes objects. Study scheme 1). ASM algorithm. By suggesting ways to effectively evaluate psychological research skills through the image object 2). By applying the result via the face recognition object to the tooth area it is detected in accordance with the recognized facial expression recognition of a person demonstrated the effect of extracting the feature points.
본 논문에서는 가변 크기 블록 기반의 새로운 얼굴 특징 표현 방법을 제안한다. 기존 외형 기반의 얼굴 표정 인식 방법들은 얼굴 특징을 표현하기 위해 얼굴 영상 전체를 균일한 블록으로 분할하는 uniform grid 방법을 사용하는데, 이는 다음 두가지 문제를 가지고 있다. 얼굴 이외의 배경이 포함될 수 있어 표정을 구분하는 데 방해 요소로 작용하고, 각 블록에 포함된 얼굴의 특징은 입력영상 내 얼굴의 위치, 크기 및 방위에 따라 달라질 수 있다. 본 논문에서는 이러한 문제를 해결하기 위해 유의미한 표정변화가 가장 잘 나타내는 블록의 크기와 위치를 결정하는 가변 크기 블록 방법을 제안한다. 이를 위해 얼굴의 특정점을 추출하여 표정인식에 기여도가 높은 얼굴부위에 대하여 블록 설정을 위한 기준점을 결정하고 AdaBoost 방법을 이용하여 각 얼굴부위에 대한 최적의 블록 크기를 결정하는 방법을 제시한다. 제안된 방법의 성능평가를 위해 LDTP를 이용하여 표정특징벡터를 생성하고 SVM 기반의 표정 인식 시스템을 구성하였다. 실험 결과 제안된 방법이 기존의 uniform grid 기반 방법보다 우수함을 확인하였다. 특히, 제안된 방법이 형태와 방위 등의 변화가 상대적으로 큰 MMI 데이터베이스에서 기존의 방법보다 상대적으로 우수한 성능을 보여줌으로써 입력 환경의 변화에 보다 효과적으로 적응할 수 있음을 확인하였다.
최근 미디어 분야에도 인공지능(AI)을 적용한 다양한 서비스가 등장하고 있는 추세이다. 하지만 편집점을 찾아 영상을 이어 붙이는 영상 편집은, 대부분 수동적 방식으로 진행되어 시간과 인적 자원의 소요가 많이 발생하고 있다. 이에 본 연구에서는 Video Swin Transformer를 활용하여, 발화 여부에 따른 영상의 편집점을 탐지할 수 있는 방법론을 제안한다. 이를 위해, 제안 구조는 먼저 Face Alignment를 통해 얼굴 특징점을 검출한다. 이와 같은 과정을 통해 입력 영상 데이터로부터 발화 여부에 따른 얼굴의 시 공간적인 변화를 모델에 반영한다. 그리고, 본 연구에서 제안하는 Video Swin Transformer 기반 모델을 통해 영상 속 사람의 행동을 분류한다. 구체적으로 비디오 데이터로부터 Video Swin Transformer를 통해 생성되는 Feature Map과 Face Alignment를 통해 검출된 얼굴 특징점을 합친 후 Convolution을 거쳐 발화 여부를 탐지하게 된다. 실험 결과, 본 논문에서 제안한 얼굴 특징점을 활용한 영상 편집점 탐지 모델을 사용했을 경우 분류 성능을 89.17% 기록하여, 얼굴 특징점을 사용하지 않았을 때의 성능 87.46% 대비 성능을 향상시키는 것을 확인할 수 있었다.
사용자에게 친근감 있는 인터페이스를 제공하는 얼굴 모델링에 대한 연구가 활발히 진행 중이다. 본 논문에서는 기존 방법인 3차원 스캐너가 카메라를 이용하지 않고 얼굴의 정면상과 측면상의 사진을 이용하여 크기와 배경의 복잡성에 상관없이 일반적인 특징점을 추출하여 삼각형 메쉬로 구성된 표준 모델을 생성하고 이를 이용해서 3차원 얼굴의 형태를 생성하는 시스템을 제안한다. 추출된 특징점은 각개인의 얼굴 형태에 맞게 변형함으로서 좀더 현실적인 3차원 얼굴 모델링을 제공한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.