• Title/Summary/Keyword: fabrication process

Search Result 4,367, Processing Time 0.035 seconds

Hybrid 3D Printing and Casting Manufacturing Process for Fabrication of Smart Soft Composite Actuators (지능형 연성 복합재 구동기 제작을 위한 3D 프린팅-캐스팅 복합 공정)

  • Kim, Min-Soo;Song, Sung-Hyuk;Kim, Hyung-Il;Ahn, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.77-83
    • /
    • 2016
  • Intricate deflection requires many conventional actuators (motors, pistons etc.), which can be financially and spatially wasteful. Novel smart soft composite (SSC) actuators have been suggested, but fabrication complexity restricts their widespread use as general-purpose actuators. In this study, a hybrid manufacturing process comprising 3-D printing and casting was developed for automated fabrication of SSC actuators with $200{\mu}m$ precision, using a 3-D printer (3DISON, ROKIT), a simple polymer mixer, and a compressor controller. A method to improve precision is suggested, and the design compensates for deposition and backlash errors (maximum, $170{\mu}m$). A suitable flow rate and tool path are suggested for the polymer casting process. The equipment and process costs proposed here are lower than those of existing 3D printers for a multi-material deposition system and the technique has $200{\mu}m$ precision, which is suitable for fabrication of SSC actuators.

Cold Rolling Process for the Matrix Fabrication of the Mcfc (용융탄산염형 연료전지의 전해질 매트릭스에 관한 연구)

  • Park, Sang-Kill;Rho, Chang-Joo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.2
    • /
    • pp.125-131
    • /
    • 1991
  • Electrolyte matrix fabrication process can be classifed as hot pressing, tape casting, callendering, electrophoretic deposition. however, these have limits in practice. Hot pressing is cumbersome method, because of careful heating and cooling. Furthermore, the perfected tile is so fragile that it is difficult to fit in a cell. Therefore this method is not adequate for mass production of the electrolyte matrix. Using electrophoretic deposition method, a very thin matrix can be made, but many attempts of the electrolyte embeding were found to be failure. Tape casting and callendering methods are employed in most of the matrix fabrication for the present. But these methods require lots of water as a solvent, so that coating of the LiAlO sub(2) with electrolyte is difficult. Recently, hot roll milling method has been developed and the perfected matrix was proved to be free from crack. The method, however, needs a roller to make a matrix and a perfected matrix is carefully striped off from the cooled roller. Therefore, this method requires a long time due to the cooling process. The author proposes a cold rolling process. On this method, heated slurry of the LiAlO sub(2) mixed with binder, is rolled with a cold roller. The heated slurry dose not adhere to the roller, since contacted hot slurry is rapidly solidified. Therefore fabrication speed is increased, without getting rid of merits of the hot rolling process.

  • PDF

Web-based Design and Manufacturing System for Micro Fabrication (마이크로 가공을 위한 웹 기반 설계 가공 시스템)

  • Ahn, Sung-Hoon;Kim, Hyung-Jung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.904-909
    • /
    • 2004
  • In this paper a web-based micro fabrication system is discussed. A commercial CAD and a web browser were used as its user interfaces. In these user interfaces the concepts of Design for Manufacturing (DFM) was implemented providing the fabrication knowledge of micro machining to the designers. Simple databases were constructed to store the fabrication knowledge of materials, tools, and micro machining know-how. The part geometry was uploaded to the web server of this system as an STL (Stereo Lithography) format with process parameters for 3-axis micro milling. A Slice-based process planner automatically provides NC codes for controlling micro stages. A couple of micro parts were fabricated using the system with micro endmills. This design and manufacturing system enables network users to obtain micro-scale prototypes in a rapid manner.

  • PDF

Web Service based Micro Fabrication System (웹 서비스 기반 마이크로 가공 시스템)

  • 김형중;안성훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.170-173
    • /
    • 2004
  • In this paper a web-based micro fabrication system is discussed. A commercial CAD and a web browser were used as its user interfaces. For the user interfaces, the concepts of Design for Manufacturing (DFM) were implemented providing the fabrication knowledge of micro machining to the designers. Simple databases were constructed to store the fabrication knowledge of materials, tools, and micro machining know-how. The part geometry was uploaded to the web server of this system as an STL (Stereo Lithography) format with process parameters for 3-axis micro milling. A Slice-based process planner automatically provides NC codes for controlling micro stages. A couple of micro parts were fabricated using the system with micro endmills. This design and manufacturing system enables network users to obtain micro-scale prototypes in a rapid manner.

  • PDF

A Study on Deterministic Utilization of Facilities for Allocation in the Semiconductor Manufacturing (반도체 설비의 효율성 제고를 위한 설비 할당 스케줄링 규칙에 관한 연구)

  • Kim, Jeong Woo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.153-161
    • /
    • 2016
  • Semiconductor manufacturing has suffered from the complex process behavior of the technology oriented control in the production line. While the technological processes are in charge of the quality and the yield of the product, the operational management is also critical for the productivity of the manufacturing line. The fabrication line in the semiconductor manufacturing is considered as the most complex part because of various kinds of the equipment, re-entrant process routing and various product devices. The efficiency and the productivity of the fabrication line may give a significant impact on the subsequent processes such as the probe line, the assembly line and final test line. In the management of the re-entrant process such as semiconductor fabrication, it is important to keep balanced fabrication line. The Performance measures in the fabrication line are throughput, cycle time, inventory, shortage, etc. In the fabrication, throughput and cycle time are the conflicting performance measures. It is very difficult to achieve two conflicting goal simultaneously in the manufacturing line. The capacity of equipment is important factor in the production planning and scheduling. The production planning consideration of capacity can make the scheduling more realistic. In this paper, an input and scheduling rule are to achieve the balanced operation in semiconductor fabrication line through equipment capacity and workload are proposed and evaluated. New backward projection and scheduling rule consideration of facility capacity are suggested. Scheduling wafers on the appropriate facilities are controlled by available capacity, which are determined by the workload in terms of the meet the production target.

On the fabrication of carbon fabric reinforced epoxy composite shell without joints and wrinkling

  • Vasanthanathan, A.;Nagaraj, P.;Muruganantham, B.
    • Steel and Composite Structures
    • /
    • v.15 no.3
    • /
    • pp.267-279
    • /
    • 2013
  • This article describes a simple and cost effective fabrication procedure by using hand lay-up technique that is employed for the manufacturing of thin-walled axi-symmetric composite shell structures with carbon, glass and hybrid woven fabric composite materials. The hand lay-up technique is very commonly used in aerospace and marine industries for making the complicated shell structures. A generic fabrication procedure is presented in this paper aimed at manufacture of plain Carbon Fabric Reinforced Plastic (CFRP) and Glass Fabric Reinforced Plastic (GFRP) shells using hand lay-up process. This paper delivers a technical breakthrough in fabrication of composite shell structures without any joints and wrinkling. The manufacture of stiffened CFRP shells, laminated CFRP shells and hybrid (carbon/glass/epoxy) composite shells which are valued by the aerospace industry for their high strength-to-weight ratio under axial loading have also been addressed in this paper. A fabrication process document which describes the major processing steps of the composite shell manufacturing process has been presented in this paper. A study of microstructure of the glass fabric/epoxy composite, carbon fabric/epoxy composite and hybrid carbon/glass/fabric epoxy composites using Scanning Electron Microscope (SEM) has been also carried out in this paper.

Development of a Photopolymer-based Flexible Tactile Sensor using Layered Fabrication and Direct Writing (적층조형과 직접주사방식을 결합한 광경화성 수지 기반의 신축성 촉각센서의 제작)

  • Woo, Sang Gu;Lee, In Hwan;Kim, Ho-Chan;Lee, Kyung Chang;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.8-14
    • /
    • 2014
  • Many kinds of robots and machines have been developed to replace human laborin industrial and medical fields, as well as domestic life. In these applications, the device sneed to obtain environmental data using diverse sensors. Among such sensors, the tactile sensor is important because of its ability to get information regarding surface texture and force through the use of mechanical contact. In this research, a simple tactile sensor was developed using the direct writing of pressure sensitive material and layered fabrication of photocurable material. The body of the sensor was fabricated using layered fabrication, and pressure sensitive materials were dispensed between the layers using direct writing. We examined the line fabrication characteristics of the pressure sensitive material according to nozzle dispensing conditions. A simple $4{\times}4$ array flexible tactile sensor was successfully fabricated using the proposed process.

Direct Carrier System Based 300mm FAB Line Simulation (Direct 반송방식에 기반을 둔 300mm FAB Line 시뮬레이션)

  • Lee, Hong-Soon;Han, Young-Shin;Lee, Chil-Gee
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.2
    • /
    • pp.51-57
    • /
    • 2006
  • Production environment of semiconductor industry is shifting from 200mm wafer process to 300mm wafer process. In the new era of semiconductor industry, FAB (fabrication) Line Automation is a key issue that semiconductor industry is facing in shifting from 200mm wafer fabrication to 300mm wafer fabrication. In addition, since the semiconductor manufacturing technologies are being widely spread and market competitions are being stiffened, cost-down techniques became basis of growth. Most companies are trying to reduce average cycle time to increase productivity and delivery time. In this paper, we simulated 300mm wafer fabrication semiconductor manufacturing process by laying great emphasis on reduce average cycle time.

  • PDF

Fabrication of High Tc Superconducting Nano Powder Using Chemical Process (화학공정을 이용한 초전도 나노 분말 활성)

  • Lee, Sang-Heon;Kim, Chan-Jung;Jang, Kun-Ik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.547-548
    • /
    • 2006
  • In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBaCuO bulk superconductor with high mechanical strength and critical current density. In this project, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of YBaCuO superconductor, and we reported the production of the YBaCuO high Tc superconductor by the pyrolysis method.

  • PDF