• Title/Summary/Keyword: fabric characteristics

Search Result 808, Processing Time 0.025 seconds

Haptic Device for Realizing the Stiffness of Virtual Swatch (가상 스와치를 위한 신축성 구현 햅틱 장치)

  • Lee, Sooyong
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.230-237
    • /
    • 2022
  • A technology that allows users to feel the elasticity of fabric through force feedback in the fashion and textile fields is very helpful to related manufacturing and sales areas. Currently bundle of fabrics, so called Swatch, is the only available way for the designer, manufacturer and the end-user to feel the fabrics. Images and video clips provide only visual characteristics, hence touch and stiffness are also very important characteristics to check beforehand. A study is conducted on a haptic device, which estimates the amount of change in the length of the virtual fabric and generates resistive force so that the user could feel the fabric stiffness. Since cables that can only transmit the tensile force are used, a force realization method is proposed, and it is verified numerically and experimentally.

Tension-Tension Fatigue and Tension-Tension Bearing Fatigue Characteristics of Glass Fabric/Phenol Composite Laminates for the Internal Components of the High Speed Trains (고속전철 내장부품용 유리섬유 직조 페놀수지 복합재료 적층판의 인장-인장 피로특성 및 인장-인장 베어링 피로특성)

  • 김진봉;황병선;이상관;박지상;조정미
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.904-909
    • /
    • 2002
  • This paper contains the tension-tension and the tension-tension bearing fatigue characteristics of glass fabric/phenol composite laminates. The experimental results show that the bearing fatigue characteristics of the material is so excellent compared with the simple tension fatigue characteristics, that there are no needs of additional strengthening for mechanical joint parts when the parts are properly designed. The experimental data are also compared with the results of glass fabric/epoxy composite laminates.

  • PDF

Effects of Material Properties and Fabric Structure Characteristics of Graduated Compression Stockings (GCS) on the Skin Pressure Distributions

  • Liu Rong;Kwok Yi-Lin;Li Yi;Lao Terence-T;Zhang Xin
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.322-331
    • /
    • 2005
  • Graduated compression stockings (GCS) have been widely used for the prophylaxis and treatment of venous diseases. Their gradient pressure function largely related to their fabric structure and material properties. By combing fabric physical testing and wear trials, this study investigated the GCSs fabric structure and material properties at different locations along the stocking hoses, and quantitatively analyzed the effects of fabrics on skin pressure longitudinal and transverse distributions. We concluded that, Structural characteristics and material properties of stocking fabrics were not uniform along the hoses, but a gradual variation from ankle to thigh regions, which significantly influenced the corresponding skin pressure gradient distributions; Tensile (WT, EM) and shearing properties (G) generated most significant differences among ankle, knee and thigh regions along the stocking hose, which significantly influenced the skin pressure lognitudinal gradient distribution. More material indices generating significant gradual changes occurred in the fabric wale direction along stocking hose, meaning that materials properties in wale direction would exert more important impact on the skin pressure gradient performances. And, the greater tensibility and smoother surface of fabric in wale direction would contribute to put stocking on and off, and facilitate wearers' leg extension-flexion movements. The indices of WT and EM of stocking fabrics in series A have strong linear correlations with skin pressure lognitudinal distribution, which largely related to their better performances in gradual changes of material properties. Skin pressure applied by fabric with same material properties produced pronounced differences among four different directions around certain cross-sections of human leg, especially at the ankle region; and, the skin pressure magnitudes at ankle region were more easily influenced by the materials properties, which were considered to be largely related to the anatomic structure of human leg.

Physical Property of Heat Storage Knitted Fabrics for High Emotional Garment (고감성 의류용 축열 니트소재의 물성)

  • Kim, Hyun Ah;Heo, Kyoung;Kim, Seung Jin
    • Fashion & Textile Research Journal
    • /
    • v.17 no.2
    • /
    • pp.295-304
    • /
    • 2015
  • This paper investigated wear comfort property of heat storage knitted fabrics for high emotional garment. For this purpose, ZrC imbedded PET knitted fabric was prepared and various physical properties such as thermal, wicking and drying characteristics were measured. In addition, far-infrared emission characteristics of ZrC imbedded PET was analysed and tactile hand property and dye affinity of ZrC imbedded knitted fabric were also studied in comparison with regular and other commercial heat storage PET knitted fabrics. It was observed that Zr imbedded amount in the yarn was 19.29% by ingredient analysis and far-infrared emission energy was $3.65{\times}10^2W/m^2$, emissivity was 0.906 at the range of wavelength $6{\sim}20{\mu}m$. It was found that maximum heat flow (Qmax) of ZrC imbedded PET knitted fabric was lower than that of regular PET one and warmth keepability rate was higher than that of regular PET one, which means ZrC imbedded PET have heat storage property. Drying property of ZrC imbedded knitted fabric was better than that of regular PET one due to heat by far-infrared emitted from ZrC in the core of filament. It revealed that wicking property of the ZrC imbedded fabric was not influenced by far-infrared emission, but affected by fibre physical properties. Tactile hand property of ZrC imbedded knitted fabric was not influenced by imbedding ZrC in the filament but affected preferably by structure of knitted fabric. Dye affinity of ZrC imbedded PET knitted fabric was less influenced by dyeing temperature and time than regular PET knitted one.

Mechanical Behaviors of Multi-Axial 'Warp Knitted Fabric Composites (다축경편 복합재료의 거동에 관한 연구)

  • Kim Hyung-Woo;Chun Heoung-Jae;Byun Joon-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.198-202
    • /
    • 2004
  • An analytical model using expanded bridging model was proposed to predict the elastic properties and behaviors of stitched multi-axial warp knitted (MWK) fabric composites, The characteristics of MWK fabric composites are the assemblage of multi-layers of fiber bundles for in-plane reinforcement and stitch yams for the through-the-thickness reinforcement. In the analysis, a representative volume of the MWK fabric composite was identified, The geometric limitations, effects of stitching yams and design parameters of MWK fabric composites were considered in the model. Then, the elastic properties and behaviors of MWK fabric composites were predicted, Finally, the results of proposed model of the composites were verified through the experiments, The predicted results were in fair agreement with the experimental results

  • PDF

An Analysis of the Fashion Trends in Korea over the Last 10 years(1996-2005) (최근 10년(1996년$\sim$2005년) 간 국내 패션 트렌드의 경향 분석)

  • Ko, Eun-Ju;Lee, Jee-Hyun
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.9
    • /
    • pp.18-28
    • /
    • 2008
  • The purpose of this study is to examine the Characteristics of Fashion Trends($1996{\sim}2005$) of Korea by the trend elements - style, fabric and color. The results of this study are as followed. During 10years, 'modern(18%)', 'elegant(11%)' and 'romantic(10%)' styles were shown in order, and colors of YR(17%), Y(14%), R(13%) and PB(11%) were shown in order. Considering tones, m(16%), d(12%), gy(11%) and s(10%) tones were in the order of frequency. In the fabric trend 'elegant(19%)', 'modern(14%)' and 'natural(14%)' images showed the high frequency. Since 2000's, style trends and fabric trends were subdivided, and the contrary images coexisted. The trend images of 'natural', 'retro', 'manish' and 'fun' were mainly used in fabric trend, and 'romantic' and 'classic' images were frequently used in style trend. The changes of trend images in style and fabric have been similar until the early 2000's but the cycle of trend of style became shorter than fabric trend. Therefore the cycle of fabric trend should be changed to be a short term and subdivided in company with style trend.

Effect of hot press time on the structure characteristics and mechanical properties of silk non-woven fabric

  • Kim, Ye Eun;Bae, Yu Jeong;Seok, Young Seek;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.44 no.1
    • /
    • pp.12-20
    • /
    • 2022
  • In this research, the silk web was hot-pressed for various times, the effect of press time on the structure and mechanical properties of silk non-woven fabric was also investigated. The yellowing appeared in the silk non-woven fabric and became more apparent as press time was increased. The crystallinity of silk was decreased by the hot press treatment and it did not change significantly with an increase of hot press time. The porosity of silk non-woven fabric was constantly decreased until 120 s and it did not change much after that. The thickness of silk non-woven fabric was significantly decreased by a press time of 10 s and slightly decreased with a further increase of hot press time. The hot press treatment increased the maximum stress and elongation of silk non-woven fabrics. The press time had a significant impact on the mechanical properties of silk non-woven fabric, with 90 s being the optimum condition for the best work of rupture of silk non-woven fabric.

Analysis of Heating Characteristics Using Aluminum Multi-Layer Curtain for Protected Horticulture Greenhouses

  • Park, Bum-Soon;Kang, Tae-Hwan;Han, Chung-Su
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.193-200
    • /
    • 2015
  • Purpose: The purpose of this study was to investigate the energy saving effects and characteristics of plant growth in a greenhouse with an aluminum multi-layer curtain compared to a greenhouse with non-woven fabric. Method: The dimensions of both greenhouses $43m{\times}3.6m{\times}8m(L{\times}H{\times}W)$, and both used hot air heater systems for maintaining a constant temperature $15^{\circ}C$. Heating characteristics such as solar intensity, inside and ambient temperatures, and fuel consumption were measured and analyzed. Results: The changes of average temperature of both greenhouses during a 15-days (December 06 - 20) showed approximately $26^{\circ}C$ at around 2 pm when the ambient temperature was highest. The greenhouses were set by the heater to keep a temperature of $15^{\circ}C$ from 4 pm to 8 am the following day. The average heat loss (for 15 days) from the greenhouse with an aluminum multi-layer curtain was $161.2-268.4kJ/m^2{\cdot}h$ during the daytime and $152.3-198.1kJ/m^2{\cdot}h$ during the nighttime. The average heat loss (for 15 days) from the greenhouse with non-woven fabric was $155.7-258.9kJ/m^2{\cdot}h$ during the daytime and $144.9-207.0kJ/m^2{\cdot}h$ during the nighttime. The total heat loss (for one day) from the non-woven fabric system was $7,960kJ/m^2$($2,876kJ/m^2$ during the daytime, $5,084kJ/m^2$ during the nighttime). The heat supply over 36 days for the non-woven fabric system was higher than the aluminum multi-layer curtain system by $616.3-65,079.4kJ/m^2$. Conclusions: These results suggest that a greenhouse with an aluminum multi-layer curtain could save energy usage by 35% over a greenhouse with non-woven fabric.

Pore Size and Distribution of Polyester Fabrics Determined by Liquid Extraction Method (액체유출법에 의한 폴리에스테르 직물의 기공 크기 및 분포 측정)

  • Lee, Dong-Hwa;Yeo, Suk-Yeong;Kim, Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.1
    • /
    • pp.206-216
    • /
    • 1997
  • The purpose of this study was to determine the pore size distributions (PSDs) of polyester woven fabrics by using liquid extraction method. Three types of PSDs-percent PSD, PSD per unit area of sample and PSD per unit weight of sample-were evaluated. Plain, twill and satin polyester fabrics with various fabric counts were used as specimens. Results showed that the interyarn PSDs reflected the fabric characteristics such as the fabric count and the weave type and the intrayarn PSDs reflected the thread characteristics such as the number of fibers, the fiber diameter, the thread diameter and the thread twist. Of three types of PSDs, the PSD per unit area of sample best reflect fabric and thread characteritics. As the fabric count decreased, rc increased and interyarn pore volume increased. The PSDs were skewed to the small pore sizes and the pore volumes decreased in the order of plain> twill> satin. As the number of fibers, the fiber diameter and the thread twist decreased, the intrayarn pore volumes were increased.

  • PDF

A Study on the Thermal Resistance of Wool Fabric Constructions (의류직물의 구성조건에 따른 열저항 특성 연구)

  • Kim, Tae-Hoon;Jun, Byung-Ik
    • Fashion & Textile Research Journal
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 2001
  • The purpose of this study was to determine the thermal characteristics of men's suits ensembles and their fabrics. For the study, 100% wool fabrics were woven with various fabric structure, fabric density and yam count and With the use of these, 12 men's suits were made with the same design. Physical characteristics that affect thermal transport properties, including drapery, cover factor; bulk density, keeping warmth ratio, vapor permeability, air permeability and porosity of the fabrics were measured. In addition, thermal resistance of men's suit ensembles, including Y-shirts, inner wear and socks was measured on the thermal manikin in the environmental chamber. The result of the study was as follows: 1. In terms of fabric structure, keeping warmth ratio of plain woven fabrics was higher than those of twill and satin woven fabrics and also, vapor and air permeability and porosity of plain woven fabrics were higher than those of twill and satin woven fabrics. 2. The result showed that thermal resistance of 12 ensembles were in the range of 0.77clo~0.97clo. 3. There was little correlation between woven condition such as, including structure, fabric density and yam count and thermal resistance of ensembles.

  • PDF