• Title/Summary/Keyword: fabric characteristics

Search Result 808, Processing Time 0.025 seconds

The Effect of Alkali Treatment on the Hand of Polyester Fabrics (폴리에스테르 직물의 알칼리 감량가공에 따른 촉감의 변화)

  • 신혜원
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.5
    • /
    • pp.783-791
    • /
    • 1996
  • The effect of alkali treatment on the changes in characteristics, mechanical properties, and hand of polyester fabrics was studied. Two kinds of fabrics having different yarn deniers were treated varying weight loss. The results were as follows; 1. Changes in constructional characteristics by alkali treatment were: a decrease in weight & thickness of fabric, a decrease in yarn denier, a decrease in apparent density of fabric, an increase in porosity to air, and a change fiber surface. 2. As for the changes in mechanical properties by alkali treatment, findings were : an increase in WT, RT, MIU, LC, and WC, a decrease in LT, B,2HB, G,2HG,2HGS, MMD, SMD, and RC, ana an increase in drape. 3. Changes in hand by alkali treatment were: a decrease in KOSHI and HARE, an increase in FUUURAMI, SHARI, KISHIMI, and SHENAYAUASA, and an increase in T.H.V 4. In the case of the same weight loss, the hand of 40/24 fabric being composed of thinner yarns was better than the hand of 50/24 fabric. 5. When 50/24 fabric was treated to have the same weight with 40/24 fabric, so the yam deniers of two fabrics were the same, the hand of 50/24 fabric having larger weight loss was better than the hand of 40/24 fabric.

  • PDF

Physical Properties of Ultra-fine Denier Filament Yarn Fabric

  • Kim, Jong-Jun;Son, Yang-Kug
    • Journal of Fashion Business
    • /
    • v.10 no.3
    • /
    • pp.23-30
    • /
    • 2006
  • Various high-touch textile products have been developed recently including ultra-fine denier filament yarn fabrics. The touch or hand of high value-added products is of prime importance. Physical and mechanical properties of fabric specimens, ultra-fine denier filament yarn fabric specimen, 100% wool fabric and wool/polyester 50:50 fabric,were measured using the KES. Compressibility of the ultra-fine denier fabric is recommendable, possibly due to the good bulk property of the specimen. Overall, the THV of the ultra-fine denier fabric is positioned between those of the 100% wool fabric and wool/polyester 50:50 fabric. Observed differences in the physical and mechanical properties explain the fabric specimen characteristics reasonably.

Effects of Mixed Characteristics of Oily Soil on Detergency of PET Fabric in Oily/Particulate Soil Mixed System (지용성/고형오구의 혼합오염계에서 지용성오구의 혼합특성에 따른 PET직물의 세척성)

  • Kang, In-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.10
    • /
    • pp.1242-1251
    • /
    • 2011
  • This study investigates the effect of mixed characteristics of oily soil such as mixed ratio, polarity of oily soil on contact angle of fabric, removal of oily and particulate soil from PET fabric in oily/particulate soil mixed system. The contact angle of fabric in the surfactant solution with suspended oily soil was examined as a fundamental environment of detergency of soil from fabrics. Detergency was investigated as function of mixed ratios of oily/ particulate soil, type of oily soil, surfactants concentration, surfactant type and temperature of detergency in surfactant solution. The contact angle of fabric in surfactant solution sharply increased with mixing nonpolar oily soil; in addition, the contact angle slightly increased with increasing contents of oily soil and decreased with increasing surfactant concentration. The removal of oily and particulate soil from fabric was higher in the solution mixed with polar versus nonpolar oily soil. The detergency increased with increasing surfactant concentration and the increased temperature of surfactants solution that were relatively improved in NPE compared to DBS solutions, The results indicated that the detergency of oily and particulate soil showed a similar trend in oily/ particulate mixed soil systems. The general contact angle of fabric was well related with the detergency of oily and particulate soil in oily/particulate mixed soil system, therefore, the primary factor determining the detergency of soil in oily/particulate mixed soil system may be the contact angle of fabric caused by wettability.

Analysis of Characteristics of Functional Outers with Moisture-permeable Waterproof Fabric - Focus on Fabrics, Washing·Cares, Design, Patterns, Subsidiary Materials, and Sewing - (투습방수 직물을 사용한 기능성 아우터의 특성 분석 - 소재, 세탁·취급, 디자인, 패턴, 부자재, 봉제를 중심으로 -)

  • Roh, Eui Kyung;Yoon, Mi Kyung
    • Fashion & Textile Research Journal
    • /
    • v.23 no.1
    • /
    • pp.129-141
    • /
    • 2021
  • This study investigated fabrics, washing and cares, design, pattern, subsidiary materials, and sewing methods with a focus on the functional outers using moisture-permeable waterproof fabric as a shell; in addition, each element was analyzed for differences depending on fabric type. The characteristics of 34 outers were investigated through labels, online product introductions, visual inspection, observations from two experts with more than 30 years experience and wear tests. Moisture-permeable waterproof fabrics used for the outer were classified into two types; in addition, the shell of the high-density fabric and the 2 & 3-layer fabrics had different characteristics. Various fabrics, detailed designs, and three-dimensional patterns suitable for each part of the human body were used to improve functionality. In addition, various subsidiary materials and sewing methods were used to form an organic relationship. The same washing and cares, patterns and subsidiary materials were used regardless of fabric type; however, the fabric type influenced the detailed design and sewing. The outers with high-density fabric had a loose fit, short placket, e-banded cuffs, lock-stitch, and lock-stitch+binding. However, the outer with 2 & 3 layer fabric had a slim fit, hood width adjustment, zippered pockets, cuffs with tab, seamless adhesive sewing such as laminating, lock-stitch+ seam-sealing, and welding.

Effects of Silicone Mixed Fluorochemical Finishes on Fabric Performance Characteristics of a Microfiber Polyester/Cotton Blend Fabric

  • Ahn, Young-Moo;Li, Bin;Kim, Charles J.
    • Fashion & Textile Research Journal
    • /
    • v.3 no.5
    • /
    • pp.486-491
    • /
    • 2001
  • The purpose of this study was to examine the effects of chemical finishes on performance characteristics of microfiber blend fabrics. A 60% polyester microfiber/40% cotton blend woven fabric was finished by ten chemicals: three silicone softeners, one fluorochemical, and their mixtures. Performance characteristics examined were abrasion resistance, and oil/water repellency. Chemical finishes containing dimethylpolysiloxane silicone performed better in fabric abrasion resistance than other chemicals. The correlation between abrasion wear and instrumental measures of fabric hand indicated that the breaking strength loss by abrasion related negatively to the coefficient of friction. This implied that the finished fabrics with lower surface frictional coefficient (slipperier) had higher breaking strength loss by abrasion. The microfiber structure of polyester did not appear to help in oil/water repellency due to the larger surface areas of the microfibers. The fluorochemical finished fabric had the most significant improvement on oil/water repellency. The silicone-only finishes, however, did not improve oil/water repellency. When mixed with the fluorochemical, silicone finishes showed improved oil/water repellency.

  • PDF

High Velocity Impact Characteristics of Shear Thickening Fluid Impregnated Kevlar Fabric

  • Park, Yurim;Baluch, Abrar H.;Kim, YunHo;Kim, Chun-Gon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.140-145
    • /
    • 2013
  • The development of high performance fabrics have advanced body armor technology and improved ballistic performance while maintaining flexibility. Utilization of the shear thickening phenomenon exhibited by Shear Thickening Fluids (STF) has allowed further enhancement without hindering flexibility of the fabric through a process of impregnation. The effect of STF impregnation on the ballistic performance of fabrics has been studied for impact velocities below 700 m/s. Studies of STF-impregnated fabrics for high velocity impacts, which would provide a transition to significantly higher velocity ranges, are lacking. This study aims to investigate the effect of STF impregnation on the high velocity impact characteristics of Kevlar fabric by effectively dispersing silica nanoparticles in a suspension, impregnating Kevlar fabrics, and performing high velocity impact experiments with projectile velocities in the range of 1 km/s to compare the post impact characteristics between neat Kevlar and impregnated Kevlar fabrics. 100 nm diameter silica nanoparticles were dispersed using a homogenizer and sonicator in a solution of polyethylene glycol (PEG) and diluted with methanol for effective impregnation to Kevlar fabric, and the methanol was evaporated in a heat oven. High velocity impact of STF-impregnated Kevlar fabric revealed differences in the post impact rear formation compared to neat Kevlar.

The Effect of Fusible Interlining on the Appearance related Properties & Mechanical Characteristics for the Lyocell Fabric(Part I) (리오셀직물의 심지접착에 따른 외관적 성능 및 역학적 특성(제1보))

  • 김인영;송화순
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.7
    • /
    • pp.1193-1202
    • /
    • 2001
  • The goal of this research is to investigate the effect of fusible interlinings on the mechanical characteristics and appearance related values for the Lyocell fabrics. In this study, to establish optimum fusing conditions, peel strength of the fused fabrics depending on the fusing temperature, pressure and time was measured. Appearance related properties and mechanical characteristics of the fused fabrics ere determined. The reulst are as follows: In the fusing condition of $120^{\circ}C,\;3kgf/textrm{cm}^2$, 15sec, peel strength was excellent. Peel strength was excellent in the case of tencel/cotton fabric, with increasing cover factor of woven interlining, with twill and nonwoven interlining. Flex stiffness was increased in the case of tencel/cotton fabric, with increasing weight of woven interlining, with twill and nonwoven interlining. Drapability was excellent in the case of 100% tencel fabric, with decreasing weight of woven interlining, with plain and woven interlining. Crease recovery was excellent in the case of 100% tencel fabric, with increasing weight of woven interlining, with twill and woven interlining. Shear and bend properties were increased in the case of tencel/cotton fabric, with increasing weight of woven interlining, with plain and nonwoven interlining.

  • PDF

The Characteristics of Kenaf/Rayon Fabrics (케냐프/레이온 혼방 직물의 특성에 관한 연구)

  • 이혜자;안춘순;김정희;유혜자;한영숙;송경헌
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.910
    • /
    • pp.1282-1291
    • /
    • 2004
  • Kenaf was cultivated and harvested in large quantity in Cheju Island and Chinju, Kyungsangnamdo. It was chemically rotted with 3% NaOH for 60 minutes at 100$^{\circ}C$, neutralized using 1% acetic acid, washed and dried, and obtained 40kg of dry kenaf fiber. Kenaf 15/rayon 85, flax 15/rayon 85, and rayon 100% yam was spun and the physical characteristics were measured. Plain weave and twill weave fabrics were made using each of the above yarns as the filling yam. Cotton 100% yam was used as the warp yam in all fabrics. Kenaf/rayon blend yarns were higher in tenacity and elongation, lower in yam uniformity, higher in the number of nep than the flax/rayon blended yams. Kenaf/rayon blend fabric had higher tenacity and elongation compared to the flax/rayon blend fabric Kenaf/rayon blend fabric was most stiff in both plain weave and twill weave fabrics whereas drape characteristics was dependent upon the fabric structure of the kenaf/rayon blend and flax/rayon blend. There were little differences between the kenaf/rayon blend fabric and the flax/rayon blend fabric in the Kawabata physical measurements and the PHVs. The only drawback of kenaf fiber was it's surface roughness and it is expected that it can be improved by enzyme retting and mechanical bundle separation.

Thermal Comfort and Tactile Wearing Performance of Wool/nylon Fabrics for Tra-biz Garment (울/나일론 tra-biz 의류용 직물 소재의 열적 쾌적성과 착용특성)

  • Kim, Hyun Ah
    • Fashion & Textile Research Journal
    • /
    • v.18 no.6
    • /
    • pp.878-888
    • /
    • 2016
  • In this study, wool/nylon(50/50%) blend yarn and its fabrics for tra-biz(complex word of travel+business) garment were prepared, and its wear comfort characteristics were investigated through thermal manikin and human-body wearing experiment. In addition, tactile wearing performance from fabric mechanical properties and the dimensional stability and the pilling of the fabric specimen during wearing and dry-cleaning were measured and compared with those of wool 100% fabric specimen. Heat keepability of the wool/nylon(50/50%) blend fabric by thermal manikin experiment was superior than that of wool 100% fabric, this result was verified with human-body wearing experiment and its result coincided well with this experimental result. Tactile wearing performance of the wool/nylon(50/50%) fabric from fabric mechanical properties measured by FAST system was better than that of the wool 100% fabric. The dimensional stability of the wool/nylon(50/50%) fabric was more stable than that of the wool 100% fabric. Because relaxation shrinkage was lower and hygral expansion of wool 100% fabric was more high. However, the breathability and pilling property of the wool/nylon(50/50%) fabric were inferior than those of the wool 100% fabric. The possibility of application for tra-biz garment of wool/nylon(50/50%) blend fabric was observed because of good heat keepability, tactile wearing performance and washing fastness.

A Study of The Stripe Patterns on The Fabric Design Since 2000 (년대 2000 이후 섬유디자인에 나타난 스트라이프 패턴 연구)

  • Han, Jung-Im
    • Journal of Fashion Business
    • /
    • v.15 no.2
    • /
    • pp.160-173
    • /
    • 2011
  • Stripe has been one of the all-time favorite fabric patterns so far and the usages have been widely applied of nearly everything ranging from everyday dress to interior fabrics. As the times change, patterns of this simple geometrical design have gradually become varied. Many effects of stripe patterns have allowed the patterns to be used in fabrics for fashion design and the patterns are considered fit for expressing individual characteristics. By studying theoretical background on categories of stripe patterns and the characteristics as a design and by researching the trends and properties exhibited in the modern fabric design, this paper will seek the potential of stripe patterns for design of a modern sense and the directions to express the patterns as a value-added design. This research was conducted through literature, books published at home and abroad, research papers and photographs on stripe patterns. Domestic magazines, web research, and photographs published since 2000 were studied for an analysis of the trends and characteristics of stripe patterns displayed in the modern fabric design. As the results, this research will explain the tendencies of stripe patterns on the modern fabric designs divided into several ways: simple and restrained modernity, active and sporty property, mannishness putting practicality forward-emerging as the status of women rises, and femininity emphasizing elegant women. The characteristics of the Plastic are categorized simplicity, rhythmicality, and Mixing of patterns.