• Title/Summary/Keyword: eyebrow region extraction

Search Result 6, Processing Time 0.028 seconds

METHODS OF EYEBROW REGION EXTRACRION AND MOUTH DETECTION FOR FACIAL CARICATURING SYSTEM PICASSO-2 EXHIBITED AT EXPO2005

  • Tokuda, Naoya;Fujiwara, Takayuki;Funahashi, Takuma;Koshimizu, Hiroyasu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.425-428
    • /
    • 2009
  • We have researched and developed the caricature generation system PICASSO. PICASSO outputs the deformed facial caricature by comparing input face with prepared mean face. We specialized it as PICASSO-2 for exhibiting a robot at Aichi EXPO2005. This robot enforced by PICASSO-2 drew a facial caricature on the shrimp rice cracker with the laser pen. We have been recently exhibiting another revised robot characterized by a brush drawing. This system takes a couple of facial images with CCD camera, extracts the facial features from the images, and generates the facial caricature in real time. We experimentally evaluated the performance of the caricatures using a lot of data taken in Aichi EXPO2005. As a result it was obvious that this system were not sufficient in accuracy of eyebrow region extraction and mouth detection. In this paper, we propose the improved methods for eyebrow region extraction and mouth detection.

  • PDF

Face Extraction using Genetic Algorithm, Stochastic Variable and Geometrical Model (유전 알고리즘, 통계적 변수, 기하학적 모델에 의한 얼굴 영역 추출)

  • 이상진;홍준표이종실홍승홍
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.891-894
    • /
    • 1998
  • This paper introduces an automatic face region extraction method. This method consists of two part: face recognition and extraction of facial organs which are eye, eyebrow, nose and mouth. In first stage, we use genetic algorithms(GAs) to get face region in complex background. In second stage, we use Geometrical Face Model to textract eye, eyebrow, nose and mouth. In both stage, stochastic component is used to deal with the problems caused by had lighting condition. According to this value, blurring number is determined. Average Computation time is less than 1 sec, and using this method we can extract facial feature efficiently from several images which has different lightning condition.

  • PDF

Facial Feature Detection and Facial Contour Extraction using Snakes (얼굴 요소의 영역 추출 및 Snakes를 이용한 윤곽선 추출)

  • Lee, Kyung-Hee;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.7
    • /
    • pp.731-741
    • /
    • 2000
  • This paper proposes a method to detect a facial region and extract facial features which is crucial for visual recognition of human faces. In this paper, we extract the MER(Minimum Enclosing Rectangle) of a face and facial components using projection analysis on both edge image and binary image. We use an active contour model(snakes) for extraction of the contours of eye, mouth, eyebrow, and face in order to reflect the individual differences of facial shapes and converge quickly. The determination of initial contour is very important for the performance of snakes. Particularly, we detect Minimum Enclosing Rectangle(MER) of facial components and then determine initial contours using general shape of facial components within the boundary of the obtained MER. We obtained experimental results to show that MER extraction of the eye, mouth, and face was performed successfully. But in the case of images with bright eyebrow, MER extraction of eyebrow was performed poorly. We obtained good contour extraction with the individual differences of facial shapes. Particularly, in the eye contour extraction, we combined edges by first order derivative operator and zero crossings by second order derivative operator in designing energy function of snakes, and we achieved good eye contours. For the face contour extraction, we used both edges and grey level intensity of pixels in designing of energy function. Good face contours were extracted as well.

  • PDF

Robust Extraction of Facial Features under Illumination Variations (조명 변화에 견고한 얼굴 특징 추출)

  • Jung Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.1-8
    • /
    • 2005
  • Facial analysis is used in many applications like face recognition systems, human-computer interface through head movements or facial expressions, model based coding, or virtual reality. In all these applications a very precise extraction of facial feature points are necessary. In this paper we presents a method for automatic extraction of the facial features Points such as mouth corners, eye corners, eyebrow corners. First, face region is detected by AdaBoost-based object detection algorithm. Then a combination of three kinds of feature energy for facial features are computed; valley energy, intensity energy and edge energy. After feature area are detected by searching horizontal rectangles which has high feature energy. Finally, a corner detection algorithm is applied on the end region of each feature area. Because we integrate three feature energy and the suggested estimation method for valley energy and intensity energy are adaptive to the illumination change, the proposed feature extraction method is robust under various conditions.

  • PDF

Robust iris recognition for local noise based on wavelet transforms (국부잡음에 강인한 웨이블릿 기반의 홍채 인식 기법)

  • Park Jonggeun;Lee Chulhee
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.121-130
    • /
    • 2005
  • In this paper, we propose a feature extraction method for iris recognition using wavelet transforms. The wavelet transform is fast and has a good localization characteristic. In particular, the low frequency band can be used as an effective feature vector. In iris recognition, the noise caused by eyelid the eyebrow, glint, etc may be included in iris. The iris pattern is distorted by noises by itself, and a feature extraction algorithm based on filter such as Wavelets, Gabor transform spreads noises into whole iris region. Namely, such noises degrade the performance of iris recognition systems a major problem. This kind of noise has adverse effect on performance. In order to solve these problems, we propose to divide the iris image into a number of sub-region and apply the wavelet transform to each sub-region. Experimental results show that the performance of proposed method is comparable to existing methods using Gabor transform and region division noticeably improves recognition performance. However, it is noted that the processing time of the wavelet transform is much faster than that of the existing methods.

Skew correction of face image using eye components extraction (눈 영역 추출에 의한 얼굴 기울기 교정)

  • Yoon, Ho-Sub;Wang, Min;Min, Byung-Woo
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.12
    • /
    • pp.71-83
    • /
    • 1996
  • This paper describes facial component detection and skew correction algorithm for face recognition. We use a priori knowledge and models about isolated regions to detect eye location from the face image captured in natural office environments. The relations between human face components are represented by several rules. We adopt an edge detection algorithm using sobel mask and 8-connected labelling algorith using array pointers. A labeled image has many isolated components. initially, the eye size rules are used. Eye size rules are not affected much by irregular input image conditions. Eye size rules size, and limited in the ratio between gorizontal and vertical sizes. By the eye size rule, 2 ~ 16 candidate eye components can be detected. Next, candidate eye parirs are verified by the information of location and shape, and one eye pair location is decided using face models about eye and eyebrow. Once we extract eye regions, we connect the center points of the two eyes and calculate the angle between them. Then we rotate the face to compensate for the angle so that the two eyes on a horizontal line. We tested 120 input images form 40 people, and achieved 91.7% success rate using eye size rules and face model. The main reasons of the 8.3% failure are due to components adjacent to eyes such as eyebrows. To detect facial components from the failed images, we are developing a mouth region processing module.

  • PDF