• Title/Summary/Keyword: extrusion test

Search Result 206, Processing Time 0.022 seconds

Effect of processing condition on the hot extrusion of Al-Zn-Mg-Sc alloy (Al-Zn-Mg-Sc 합금의 고온압출에 미치는 공정조건의 영향 분석)

  • Yeom Jong Taek;Kim Nam Yong;Lim Su-Keun;Park Nho Kwang;Kim Jeoung Han
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.202-205
    • /
    • 2005
  • Effect of processing condition on the hot extrusion of Al-Zn-Mg-Sc alloy was investigated. For this purpose, hot compression test and FE-simulation were conducted via Thermecmasteer-Z and DEFORM-3D, respectively. The microstructure evolution during hot extrusion and post heat-treatment was investigated and deformation mechanisms were analyzed by constructing processing map. FE-simulation results show that the temperature difference between container and billet has considerable influence on the final shape of extruded T-shape bar. The relation between applied load and processing time was predicted by the FE-analysis as well as punch speed vs. stroke chart.

  • PDF

Effect of Corrosion Atmosphere and Strain Rate on the Stress Corrosion Cracking of High Strength 7xxx Aluminum Alloy (고강도 7xxx 알루미늄 합금의 응력부식균열에 미치는 부식환경과 응력속도의 영향)

  • Yun, Yeo-Wan;Kim, Sang-Ha
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.3
    • /
    • pp.121-128
    • /
    • 2008
  • High strength 7xxx aluminum alloys have been applied to automotive bump back beam of the some limited model for light weight vehicle. The aluminum bump back beam is manufactured through extrusion, bending and welding. The residual stress given on these processes combines with the corrosive atmosphere on the road spreaded with corrosive chemicals to melt snow to occur the stress corrosion cracking. The composition of commercial 7xxx aluminum has Zn/Mg ratio about 3 and Cu over 2 wt% for better strength and stress corrosion cracking resistivity. But this composition isn't adequate for appling to the automotive bump back beam with high resistance to extrusion and bad weldability. In this study the composition of 7xxx aluminum alloy was modified to high Zn/Mg ratio and low Cu content for better extrusion and weldability. To estimate the resistivity against stress corrosion cracking of this aluminum alloy by slow strain rate test, the corrosion atmosphere and strain rate separate the stress corrosion cracking from conventional corrosion must be investigated. Using 0.6 Mol NaCl solution on slow strain rate test the stress corrosion cracking induced fracture was not observed. By adding 0.3% $H_2O_2$ and 0.6M $Na_2SO_4$ to 1M NaCl solution, the corrosion potential and current density of polarization curve moved to active potential and larger current density, and on the slow strain rate test the fracture energy in solution was lower than that in pre-exposure. These mean the stress corrosion cracking induced fracture can be estimated in this 1M NaCl + 0.3% $H_2O_2$ + 0.6M $Na_2SO_4$ solution. When the strain rate was below $2{\times}10^{-6}$, the stress corrosion cracking induced fracture start to be observed.

Prediction of Welding Pressure in the Non Steady state Porthole Die Extrusion of AI7003 Tubes (포트홀 다이 압출방식에 의한 AI7003 튜브의 접합강도예측)

  • Jo, Hyung-Ho;Lee, Sang-Gon;Lee, Seon-Bong;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.179-185
    • /
    • 2001
  • Porthole die extrusion is profitable to manufacture long tube with hollow section. The material through portholes is gathered within chamber and welded under high pressure. This weldability which classifies the quality of tube product is affected by several variables and die shape. But, porthole die extrusion has been executed on the experience of experts due to the complicated die assembly and complexity of metal flow. Analytic approaches that are useful in profitable die design and in the improvement of productivity are inevitably demanded. Therefore, the objective of this study is respectively to analyze the behavior of metal flow and to determine welding pressure of hot extrusion product according to the various billet temperature, bearing length and tube thickness by FE analysis and its results are compared with tube expanding tests.

  • PDF

Extrusion of Spur Gear Using High-Energy Ball Milled Al-78Zn Powder (고에너지 볼밀법으로 제조된 Al-78Zn Powder를 이용한 스퍼기어의 압출)

  • Kim, Jin-Woo;Lee, Sang-Jin;Lee, Jung-Min;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.440-446
    • /
    • 2009
  • This paper was designed to fabricate the miniature spur gear with pitch circle of 2.25mm using extrusion process of a mechanically alloyed Al-78wt%Zn powder. The mechanical alloying of the powder particles were performed for ball milled times of 4h, 8h, 16 and 32h by the planetary ball milling. The mechanical properties of these alloyed powders, which were compacted and sintered-cylindrical preforms, were estimated using compression test. The results showed that the alloyed powder with average particle size of $10{\mu}m$ milled for 32h has the highest compressive(fractured) strength(288MPa). Extrusions of the miniature spur gear using the alloyed powder were carried out at different extrusion temperatures. Extrusion temperature of $300^{\circ}C$ provided the spur gear with the highest relative density and Vickers hardness and without any surface defects.

Isotropy Control of 7075 Al Wrought Alloy by Thixoextrusion (반용융 압출에 의한 A7075 합금의 등방성 제어)

  • Yoon, Young-Ok;Kim, Shae-K.
    • Journal of Korea Foundry Society
    • /
    • v.30 no.6
    • /
    • pp.210-216
    • /
    • 2010
  • The aim of this study is to characterize a thixoextruded 7075 Al wrought alloy bar in terms of its isotropic behavior through the optical microscope, mechanical test and electron back scattered diffraction. It is also discussed of the extrudability improvement for 7075 Al wrought alloy by thixoextrusion, with emphasis on controlling thixoextrusion parameters. Hot extrusion shows that the maximum extrusion pressure depends on their characteristics in terms of flow stress and hot workability. In the contrary, thixoextrusion demonstrates that the maximum extrusion pressure is almost uniform regardless of the experimental parameters, such as initial ram speed, die bearing length and thixoextrusion temperature. The hot extruded microstructures become elongated to extrusion direction, while the thixoextruded microstructures are isotropic and homogeneously distributed due to the existence of liquid phase between solid grains during the process. The grain refinement due to dynamic recrystallization during thixoextrusion has been also occurred. Subsequent recrystallization would lead to the strengthening of mechanical properties, as observed in the study. The important point is that the values of tensile, yield strength and elongation of the thixoextruded bar without plastic deformation are similar to those of the hot extruded bar with severe plastic deformation.

Analysis on Lander Shock Absorbing by Multi-Stage Extrusion of Hyper-Viscoelastic Material (초점탄성재료의 다중 압출에 의한 착륙선 충격완충 해석)

  • Lee, Choon Woo;Kim, In-Gul
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.34-41
    • /
    • 2017
  • As an alternative of the existing honeycomb shock absorbing device, the new approach on shock absorbing design using the extrusion of hyper-viscoelastic material such as silicon rubber is studied in this paper. The strain energy and stress-strain characteristic of viscoelastic material at extrusion process through the metered orifice has a similarity with the honeycomb core for maximizing shock absorbing capability. And in order to evaluate the design feasibility of this device and to understand the shock absorbing mechanism of energy transformation, finite element analysis and quasi-static compression test of the multi-stage extrusion shock absorber are examined in this paper.

Correlation between Medial Joint Space on Rosenberg View and Ultrasonographic Medial Meniscal Extrusion (Rosenberg view상의 관절 간격과 초음파적 내측 반월상 연골 탈출의 상관 관계)

  • Kim, Jung-Man;Kim, Tae-Hyung;Im, Dong-Sun;Shin, Eun-Su;Moon, Young-Suk
    • The Journal of Korean Orthopaedic Ultrasound Society
    • /
    • v.3 no.2
    • /
    • pp.59-64
    • /
    • 2010
  • Purpose: The purpose of this study was to analyze the correlation between medial joint space on Rosenberg view and the degree of ultrasonographic medial meniscal extrusion. Materials and Methods: Three hundred ninety knees with medial joint tenderness examined by ultrasonography were reviewed between January 2009 and May 2010. Medial joint space was divided into Grade I (${\geq}$ 4 mm), Grade II (3~4 mm), Grade III (2~3 mm), Grade IV (1~2 mm) and Grade V (0~1 mm). Then sonographaphic mid-medial extrusion of the medial meniscus was measured in each patient. After dividing into Group A that didn't have large osteophytes (${\geq}$ 3 mm, medial joint at tibia) and Group B that had them, the correlation between the medial joint space and medial meniscal extrusion were analyzed in each group. One-way ANOVA & Scheffe test on the SAS program were used for the statistical analysis (p<0.05). Results: There was a positive correlation between grade of the joint space and medial meniscal extrusion in Group A, but there was no positive correlation in Group B (p<0.05). Conclusion: To the patients who didn't have advanced osteoarthritis, the narrowing of the medial joint space was one of the predictive factors for mid-medial extrusion of the medial meniscus.

  • PDF

Structural analysis and Experimental verification for Aluminum extrusion bodyshell (알루미늄 압출 소재 차체의 해석 및 시험 평가)

  • 최성규;김성종;박근수;박형순
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.870-875
    • /
    • 2002
  • The weight saving that results from the substitution of aluminum alloy for steel may be used to provide reduced energy consumption and labor cost due to simplified manufacturing process and improved vehicle performance. Because of these advantages, foreign advanced rolling stock manufacturing companies have been using aluminum alloy for bodyshell manufacturing. In this research, the comparison between FE analysis and actual load test results is performed for aluminum extrusion bodyshell, which is manufactured by Rotem Company. And the results show that the aluminum carbody structure satisfies the strength and stiffness requirements. Commercial FE analysis code and specially designed test equipment are utilized for the structural analysis and the static load test of bodyshell respectively.

  • PDF

The effect of texture of an extruded OFHC Cu rod on its sliding wear characteristics (압출된 OFHC Cu 봉재의 집합조직과 마멸거동)

  • Yi, S.K.;Kim, Y.S.;Cho, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.354-357
    • /
    • 2009
  • The effect of texture of an extruded OFHC Cu rod on its sliding wear has been explored. Disk specimens with three different orientations were machined from the Cu rod for the wear test; surfaces of the disk were perpendicular ($0^{\circ}$), inclined with a specific angle ($45^{\circ}$), and parallel ($90^{\circ}$) to the extrusion axis of the rod. The texture was analyzed using an X-ray goniometer by measuring {111}, {200}, and {220} pole figures of each specimen. The analyzed texture was correlated with wear-test results of the Cu specimen. Dry sliding wear tests were performed at room temperature using a pin-on-disk wear tester against an Al2O3 ball. Applied load, sliding distance, sliding speed were fixed as 20 N, 200 m, and 0.5 m/sec, respectively. The $45^{\circ}$-inclined (to the extrusion axis) disk specimen showed the lowest wear resistance with the least data scatters. It has been found that distribution of cube texture strongly influences wear rate of the extruded Cu rod.

  • PDF

High Strain Rate Deformation Behavior of 5083 Aluminum Alloy Prepared via Equal Channel Angular Extrusion (ECAE 전단 가공된 5083 알루미늄 합금의 고변형률 변형거동)

  • Kim, Yang Gon;Ko, Young Gun;Shin, Dong Hyuk;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.397-405
    • /
    • 2009
  • The high strain rate deformation behavior of ultra-fine grained 5083 aluminum alloys prepared via equal channel angular (ECA) extrusion was investigated in this study. The microstructure of ECA extruded specimens consisted of ultra-fine grains, and contained a considerable amount of second phase particles, which were fragmented and distributed homogeneously in the matrix. According to the dynamic torsion test results, the maximum shear stress and fracture shear strain of the route A (no rotation) specimen were lower than those of route C ($180^{\circ}$ rotation) specimen since that adiabatic shear bands of $100{\mu}m$ in width were formed in the route A specimen. The formation of adiabatic shear bands was addressed by concepts of critical shear strain, deformation energy required for void initiation, and microstructural homogeneity associated with ECA operations.