• Title/Summary/Keyword: extrusion die

Search Result 429, Processing Time 0.021 seconds

A Study on Extrusion Process of Cylindrical Product with Helical Fins Using Rotating Extrusion Die (회전압출다이를 사용한 헬리컬 핀붙이 원형단면 제품의 압출가공에 관한 연구)

  • Park S. M.;Jin I. T.
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.444-451
    • /
    • 2005
  • A new extrusion process of the circular section product with helical fins could be developed by rotating extrusion die. The twisting of extruded product is caused by the twisted conical die surface connecting the die entrance section and the die exit section linearly. But, until now, because the process has used fixed extrusion die, it needs high pressure in order to twist billet and form fin shape on the surface of billet. So, during extruding billet, in order not to twist billet, the extrusion die is needed to rotate itself instead of twisting of billet. It is known that it is possible to reduce extrusion load of product with helical fins by analysis and experiments using rotating die. And it is known that, through the extrusion load analysis by $DEFORM^{TM}-3D$ software, optimal rotational velocity of rotating die can be obtained according to reduction ratio of area and twisted angle of die. And experiments and analysis using rotating extrusion die show that the twisted angle of product can be controlled by twisted angle of extrusion helical die and the rotational velocity of extrusion helical die.

The Effect of Chamber Bottom Shape on Die Elastic Deformation and Process in Condenser Tube Extrusion (접합실 바닥형상이 컨덴서 튜브 직접압출 공정 및 금형탄성변형에 미치는 영향)

  • Lee, Jung-Min;Kim, Byung-Min;Jung, Young-Deuk;Cho, Hoon;Cho, Hyung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.66-72
    • /
    • 2003
  • In case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. However, there have been few studies about condenser tube extruded by porthole die. Original metal flow of condenser tube by porthole die extrusion is similar to hollow cylinder extrusion but the estimation of metal flow for extrusion parameters is different. For example, variation of chamber length in hollow extrusion only affects the welding pressure, however, the welding chamber length in condenser tube extrusion influences to the welding pressure as well as the deflection of mandrel. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to angular variation in the bottom of chamber in porthole die. Estimation was carried out using finite element method in as non-steady state. Analytical results can provide useful information the optimal design of porthole die.

Unsteady State Analysis of Al Tube Hot Extrusion by A Porthole Die (포트홀 다이에 의한 Al 튜브의 비정상상태 열간 압출 공정 해석)

  • 조형호;이상곤;박종남;김병민
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.311-318
    • /
    • 2001
  • Porthole die extrusion has a great advantage in the forming of long hollow section tubes. It is difficult to produce long hollow section tubes with complicated section by the conventional extrusion process with a mandrel on the stem Because of the limit of the length of mandrel and the complexity of cross section. Porthole die extrusion is affected by many parameters, such as extrusion ratio, extrusion speed, die geometry, porthole number, bearing length etc. Up to now, most of studies about porthole die extrusion have been investigated by experiments or steady state FE-analysis. However, in this paper, porthole die extrusion is analysed by the unsteady state 3D FE-simulation. And the result of unsteady state analysis is compared with the experimental result. Also, the surface state of extruded tubes are examined for the various process conditions.

  • PDF

A Study on the Con-focal Microscope for the Surface Measurements (공초점 현미경을 이용한 물체표면 형상측정에 관한 연구)

  • 강영준;송대호;유원재;백성훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.73-81
    • /
    • 2003
  • In case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. However, there have been few studies about condenser tube extruded by porthole die. Original metal flow of condenser tube by porthole die extrusion is similar to hollow cylinder extrusion but the estimation of metal flow for extrusion parameters is different. For example, variation of chamber length in hollow extrusion only affects the welding pressure, however, the welding chamber length in condenser tube extrusion influences to the welding pressure as well as the deflection of mandrel. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to angular variation in the bottom of chamber in porthole die. Estimation was carried out using finite element method in as non-steady state. Analytical results can provide useful information the optimal design of porthole die.

Die stress and Process of Analysis for Condenser Tube Extrusion according to Chamber Height (접합실 높이변화에 따른 컨덴서 튜브 직접압출 공정 및 금형강도해석)

  • Lee J. M.;Lee S. G.;Kim B. M.;Jo H. H.;Jo H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.11a
    • /
    • pp.33-41
    • /
    • 2002
  • In case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. However, there have been few studies about condenser tube extruded by porthole die. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to variation of chamber length. in porthole die. Estimation was carried out using finite element method. Porthole die is analyzed in as non-steady state. Analytical results provide useful information the optimal design of porthole die.

  • PDF

Development of Direct Extrusion Process on Al 1050 Condenser Tube by using Porthole Die (포트홀 다이를 이용한 Al1050 컨덴서 튜브의 직접압출공정 기술 개발)

  • 이정민;김병민;강충길;조형호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.53-61
    • /
    • 2004
  • Condenser tube which is used for a cooling system of automobiles is mainly manufactured by conform extrusion. However, direct extrusion using porthole die in comparison with conform extrusion has many advantages such as improvement of productivity, reduction of production cost etc. In general, the porthole die extrusion process is useful for manufacturing long tubes with hollow sections and consists of three stages(dividing, welding and forming stages). Especially, Porthole die for producing condenser tube is very complex. Thus, in order to obtain the detailed mechanics, to assist in the design of proper die shapes and sizes, and to improve the quality of products, porthole die extrusion should be analyzed in as non-steady state as possible. This paper describes FE analysis of non-steady state porthole die extrusion for producing condenser tube with multi-hole through 3D simulation in the non-steady state during the entire process to evaluate detailed metal flow, temperature distribution, welding pressure and extrusion load. Also to validate FE simulation of porthole die extrusion, a comparison of simulation and experiment results was presented in this paper.

Effects of die cooling on change of extrusion characteristics of Al-Mn-based thin-walled flat multi-port tube (금형 냉각이 Al-Mn계 다중압출 평판관의 압출 특성 변화에 미치는 영향)

  • Young-Chul Shin;Seong-Ho Ha;Tae-Hoon Kang;Kee-Ahn Lee;Seung-Chul Lee
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.63-71
    • /
    • 2023
  • In order to increase the extrusion production speed of aluminum, extrusion die cooling technology using liquid nitrogen has recently attracted a lot of attention. Increasing the extrusion speed increases the temperature of the bearing area of extrusion dies and the extrusion profile, which may cause defects on the surface of extruded profile. Extrusion die cooling technology is to directly inject liquid nitrogen through a cooling channel formed between the die and the backer inside the die-set. The liquid nitrogen removes heat from the die-set, and gaseous nitrogen at the exit of the channel, covers the extrusion profile of an inert atmosphere reducing the oxidation and the profile temperature. The aim of this study is to evaluate the cooling capacity by applying die cooling to extrusion of Al-Mn-based aluminum alloy flat tubes, and to investigate the effects of die cooling on the change in extrusion characteristics of flat tubes. Cooling capacity was confirmed by observing the temperature change of the extrusion profile depending on whether or not die cooling is applied. To observe changes in material characteristics due to die cooling, surface observation is conducted and microstructure and precipitate analysis are performed by FE-SEM on the surface and longitudinal cross section of the extruded flat tubes.

Die Stress and Process Analysis for Condenser Tube Extrusion according to Chamber Height (접합실 높이에 따른 컨덴서 튜브 직접압출 공정 및 금형강도 해석)

  • Lee, J.M.;Kim, B.M.;Jung, Y.D.;Jo, H.;Jo, H.H.
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.214-220
    • /
    • 2003
  • In the case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. There have been few studies about condenser tube extruded by porthole die. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to variation of chamber length in porthole die. The welding chamber height in condenser tube was calculated by using finite element method. Forming analysis results for condenser tube would provide useful information for the optimal design of porthole die.

A study on the Fabrication of Copper-clad Aluminum Composite using Hydrostatic Extrusion (정수압 압출을 이용한 Copper-clad Aluminum 복합계 제조에 대한 연구)

  • 한운용;이경엽;박훈재;윤덕계;김승수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.179-184
    • /
    • 2004
  • In this work, a copper-clad aluminum composite was fabricated using hot hydrostatic extrusion with various extrusion ratios (8.5, 19, 49) and semi-die angles (30, 45, 60 degree) at a temperature of 32$0^{\circ}C$, Material characteristics of copper-clad aluminum composites were determined from compression tests and hardness tests The results showed that for ER of 8.5, the optimum semi-die angle was below or equal to 30 degree and a pressure drop was about 31%. For ER of 19, the optimum semi-die angle was in the range of 40 to 50 degree and a pressure drop was about 38%. In the case of ER=49, the optimum semi-die angle was above or equal to 60 degree and a pressure drop was about 36%. Compressive yield strength was maximum for ER of 8.5 and semi-die angle of 30 degree and the value of maximum was 155 MPa. Uniform hardness distribution was obtained as the extrusion ratio increases and the semi-die angle decreases. In the case of ER=8.5 and semi-die angle of 30 degree, the lowest extrusion pressure and the maximum compressive yield strength was obtained. Therefor, it was concluded that the optimum extrusion condition for fabricated copper-clad aluminum composites under hydrostatic pressure environment was ER of 19 and semi-die angle of 30 degree.

Process analysis and prediction of die strength of condenser tube with 12 holes in hot extrusion (12홀 컨덴서 튜브의 열간 압출 공정해석 및 금형의 강도예측)

  • Lee S. H.;Jo H. H.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.436-439
    • /
    • 2005
  • Condenser tube has been used as a component of heat exchanger in automobile and air conditioning apparatus. In this paper, porthole die extrusion that is advantageous to form long hollow section tube is analyzed by direct extrusion of condenser tube with 12 holes. A study on extrusion process is performed through the 3D FE simulation at non-steady state and extrusion experiments. Especially, weldability, extrusion load and die defects were estimated try FE-simulation. This study present the redesigned die of direct extrusion in consideration of the results obtained from FE-analysis.

  • PDF