• Title/Summary/Keyword: extruder screw

Search Result 267, Processing Time 0.024 seconds

Effect of Modification PP on the Physical Properties and CNF Dispersion of PP Powder/CNF 1 wt% Slurry Composite (PP 분말/CNF 1 wt% 슬러리 복합체의 CNF 분산 및 물성에 대한 개질 PP의 영향)

  • Kim, Jun Seok;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.284-288
    • /
    • 2022
  • Polypropylene (PP) powder/cellulose nanofibers (CNF) 1 wt% slurry composites were prepared by filtering their suspension under reduced pressure and dried them in an oven followed by the use of a twin screw extruder. PP modified with side branches and polar groups was used. The side branches and polar groups were introduced into PP by using divinylbenzene and maleic anhydride (MAH), respectively. As a result of examining the dispersibility of CNF and the physical properties of the composite, it was confirmed that the composite prepared from PP powder/CNF 1 wt% slurry showed equal or higher levels in tensile and flexural strength as compared with those using the composite prepared from CNF powder.

The Effect of Compatibilizer on the Rheological Properties of Polypropylene/Glass-fiber Composites (폴리프로필렌/유리섬유 복합재료의 유변물성에 미치는 상용화제의 영향)

  • Lee Seung-Hwan;Youn Jae-Ryoun
    • Composites Research
    • /
    • v.19 no.3
    • /
    • pp.15-22
    • /
    • 2006
  • In this study, we prepared glass fiber reinforced polypropylene composites using Brabender twin-screw extruder. Compatibilizer, polypropylene-based maleic anhydride (PP-g-MAH), was used to increase the molecular interaction between polypropylene matrix and glass fiber and to enhance melt processability. We also measured the shear and uniaxial elongational behaviors of glass-fiber reinforced composites in the absence or presence of compatibilizer. The effects of compatibilizer and fiber loading on the viscoelastic behaviors were examined. It was fuund that the PP-g-MAH compatibilizer improved the fluidity and increased the molecular bonding of composite melts in shear flow. Transient elongational viscosity was increased with fiber loadings in uniaxial elongational flow However, it was decreased with increasing elongational rates because of microscale shear flow between fibers.

Preparation and Characterization of Wood Polymer Composite by a Twin Screw Extrusion (이축 압출공정을 이용한 Wood Polymer Composite의 제조 및 특성 분석)

  • Lee, Jong-Hyeok;Lee, Byung-Gab;Park, Ki-Hun;Bang, Dae-Suk;Jhee, Kwang-Hwan;Sin, Min-Cheol
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.211-217
    • /
    • 2011
  • Wood Polymer Composite (WPC) has attracted a great deal of attention in environmental industries due to renewable resources, processability, excellent physical properties and logging regulations for application to housing units and engineering construction materials. In this study, commercial WPCs were prepared by using a modular intermeshing co-rotating twin screw extruder. The effect of three main factors such as wood flour contents, coupling agent concentrations and pre-treatment of wood flour on the properties of WPCs was extensively investigated. It was found that tensile strength and thermal stability were decreased with increasing wood flour contents whereas the water absorption was increased. Addition of maleic anhydride grafted polypropylene (PP-g-MA) into WPC exhibited better physical properties. On the contrary, the water absorption was slightly decreased with PP-g-MA. Finally the sample, which was prepared with pre-treated wood flour, represented the highest tensile strength. However, the water absorption of the sample was increased due to the transition of crystalline structure of cellulose.

Properties of Extracts from Extruded Root and White Ginseng at Different Conditions (압출성형 공정변수에 따른 건조수삼과 백삼 압출성형물의 침출속도 및 침출물 특성)

  • Kim, Bong-Soo;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.306-310
    • /
    • 2005
  • The comparison in release rate constant and properties of extracts from extruded raw ginseng and extruded white ginseng was conducted to apply extrusion process for manufacturing of released ginseng tea bag. Dry raw ginseng and white ginseng powder were extruded at 20∼30% moisture content and 200∼300 rpm by using an experimental twin-screw extruder. Browness and redness (both indicated the releasing of saponin and ginsenosides) were increased with the increase in the screw speed and the decrease of moisture content. Crude saponin and water solubility index (WSI) of both ginseng also share the same behaviour against the level of screw speed and moisture content, as well as browness and redness. The particle size effects of extruded raw ginseng at 20% and 28% moisture content on absorbance of released extract at 260 up to 560 nm, WSI, and water absorption index were determined. While particle size decreased from 800∼1000 nm to 200∼500 nm, absorbance and WSI are decreased. Absorbance and WSI shown increasing level while moisture content was decreased. In conclusion, the formation of pores by expansion and disruption of cell wall in extrusion cooking were obviously responsible to increase the amount of released extract of extruded ginseng and its WSI as well. The extrusion process turns out be the efficient process for manufacturing of commercial ginseng tea product than those of other thermal processes.

Modeling of Extrusion for Pectin Extraction from Apple Pomace (사과박의 펙틴 추출을 위한 압출 공정 모형화)

  • Cho, Yong-Jin;Kim, Chong-Tai;Kim, Chul-Jin;Hwang, Jae-Kwan
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.1011-1016
    • /
    • 1999
  • This study was performed to search a physical method having high yield and quality and minimum environmental pollution for extraction of pectin from apple pomace. Based on the physical solubilization of plant cell wall under the condition of high temperature, pressure and shearing stress, apple pomace was treated by a corotating intermeshing type twin-screw extruder with the diameter-to-length ratio of 1/20. The specific mechanical energy of extruder was introduced as system parameter for extrusion process modeling and the shaft speed, feed rate and moisture content as process variables. The yield, average molecular weight and galacturonic acid content of water-soluble polysaccharides obtained by extrusion were, respectively, modeled with the linear functions of the system parameter which was of the form as a linear function of process variables. The specific mechanical energy increased with increase of shaft speed and with decrease of feed rate and moisture content. Out of process variables, moisture content had the greatest effect on specific mechanical energy. The yield increased with increase of specific mechanical energy while the average molecular weight and galacturonic acid content increased with its decrease. In aspects of yield and quality of pectin, the results from this study showed the possibility to replace a traditional acidic method with the extrusion treatment of this study.

  • PDF

Development of Well-reconstituted Instantized Thin Rice Gruel (재수화능이 향상된 인스턴트 쌀 미음의 제조)

  • Yang, Seung-Chul;Lee, Inae;Sun, Ju-Ho;Kim, Dong-Eun;Kang, Wie-Soo;Chung, Ha Sook;Shin, Malshick;Ko, Sanghoon
    • Food Engineering Progress
    • /
    • v.14 no.1
    • /
    • pp.54-59
    • /
    • 2010
  • Instantized thin gruels have been popular to supplement patients who want nutritional, ready-to-eat, and easy-to-use products. In this study, rice-based thin gruels were developed by use of gelatinized rice powder which was manufactured by extrudating rice in a twin-screw extruder. Subsequently, the rice paste from the extruder were dried and ground into fine powder. The gelatinized rice powder was mixed with the powders of various grains, soy beans, nuts, oil seeds, and vegetables to formulate the instantized thin rice gruel with well-balanced nutrients (mixed powder). The mixed powder was granulated to improve reconstitution capability in a fluid bed spray granulator (granulated powder). Lipid and protein contents were higher by 0.9 and 1.9%, respectively, in the granulated powder whereas carbohydrate content was higher by 3.2% in the mixed powder. The calculated dispersibility was 93.7 and 77.0% for the granulated and the mixed powders, respectively. The reconstitution time was 122.3 and 305.3 for the granulated and the mixed powders, respectively. In conclusion, the granulation of the mixed powder improved the dispersibility. This study will be helpful to develop a variety of processed rice products and promote rice process industry.

Study on miscibility, morphology, thermal and mechanical properties of elastomeric impact modifier reinforced Poly(lactide)/Cellulose ester blends (충격보강제로 강인화된 PLA와 cellulose ester 블렌드의 상용성 및 모폴로지, 열적, 기계적 특성에 관한 연구)

  • Park, Jun-Seo;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4081-4086
    • /
    • 2014
  • Cellulose acetate butyrate (CAB) is a biodegradable resin with excellent optical properties, but it is difficult to apply film process. In this study, an attempt was made to improve the processability of CAB using polyactic acid and the mechanical properties using an impact modifier. Polylacitc acid (PLA)/Cellulose acetate butyrate (CAB) blends with an impact modifier were prepared using a twin screw extruder. The temperature range was $140^{\circ}C$ to $200^{\circ}C$, and the screw speed was fixed to 200 rpm. To evaluate the miscibility of impact modified CAB/PLA, the glass transition behavior and morphology were observed by DSC and FE-SEM. The mechanical properties were investigated by dynamic mechanical analysis (DMA) and a Universal Testing Machine (UTM). In addition, the effect of an impact modifier in the polymer matrix was determined using a notched Izod impact strength tester. Finally, the PLA/CAB/impact modifier 75/25/10 ratio was found to be a compatible system. In the 10wt.% impact modifier, the sample had a 4 times higher izod impact strength than the non-toughening composition.

Effect of Compatibilizers on the Mechanical Properties of Waste Polypropylene/Waste Ground Rubber Tire Composites (상용화제의 첨가에 따른 재생 폴리프로필렌/폐타이어 분말 복합체의 기계적 특성 분석)

  • Park, Ki-Hun;Kim, Dong-Hak;Jung, Jong-Ki;Kim, Seong-Gil;Bang, Daesuk;Oh, Myung-Hoon;Kim, Bong-Suk
    • Resources Recycling
    • /
    • v.23 no.1
    • /
    • pp.70-79
    • /
    • 2014
  • In this study, waste polypropylene and waste ground rubber tire(WGRT) composites were prepared by using a modular intermeshing co-rotating twin screw extruder. The effect of three main factors such as WGRT contents, particle size, compatibilizers on the properties of waste PP/WGRT composites was extensively investigated. Tensile strength of the composites was decreased with an increase in WGRT contents, whereas elongation at break and impact strength were increased. The tensile strength, elongation at break and impact strength of the composites with the smaller size of the WGRT were more enhanced. Addition of PP-g-MA into waste PP/WGRT composites exhibited better tensile strength. However, elongation at break and impact strength were slightly decreased with increasing of PP-g-MA. On the other hand, tensile strength, impact strength and elongation at break of the composites were increased by adding the EPDM-g-MA and SEBS-g-MA. Especially, elongation at break was significantly increased compared to the composite with PP-g-MA.

Quality Characteristics of Reconstituted Multi-Grain by Extrusion Process (압출성형기법에 의해 제조한 재성형 혼합곡의 품질특성)

  • Lee, Young-Tack;Seog, Ho-Moon;Kim, Sung-Soo;Kim, Kyung-Tack;Hong, Hee-Do
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.963-968
    • /
    • 1997
  • Cereals and legumes were ground, blended and extruded with a twin-screw extruder to form a reconstituted grain. The basic formula was as follows: brown rice 30%, barley 30%, wheat 20%, millet 5%, sorghum 5%, soybean 7%, and red bean 3%. Extrusion conditions were properly set for feed moisture content of $24{\sim}30%$, barrel temperature of $50{\sim}60^{\circ}C$, and screw speed at 250 rpm. The extruded grain was air-dried and evaluated for quality characteristics, compared with milled rice. Size and shape of the reconstituted grain were similar to short-grain milled rice. Stacking volume of the reconstituted grain was a little higher than that of milled rice, and its water absorption was more rapid. From the texture measurements, hardness of cooked reconstituted grain was slightly lower and adhesiveness was appeared to be higher.

  • PDF

Effects of Emulsifier Additions on the Physical Properties of Extruded Psyllium (유화제 첨가에 따른 차전자피 압출성형물의 물리적 특성)

  • Lee, Jung Won;Ryu, Gi Hyung
    • Food Engineering Progress
    • /
    • v.23 no.2
    • /
    • pp.118-124
    • /
    • 2019
  • This study aims to investigate the physical properties of extruded psyllium husk upon the addition of emulsifiers. Three different emulsifiers-glycerol monostearate (GMS), polyglycerol ester (PGE), and sugar ester (SE)-were added to the mixture of psyllium husk and rice powder before extrusion. Extrusion was performed using a twin-screw extruder at 140℃ die temperature, 200 rpm screw speed, and 16% feed moisture content. The physical properties of psyllium husk extrudates including expansion ratio, specific length, piece density, texture profile, color properties, water soluble index, and water absorption index were evaluated. It was observed that the expansion ratio was the highest while the specific length and piece density were the lowest in the control which had no emulsifiers. Texture profile analysis showed that the apparent elastic modulus and breaking strength were highest in the extrudate with a PGE of 0.1%. The adhesiveness was found to be lowest in the extrudates with an SE of 0.1% and GMS of 0.5%. Lightness value was highest in the extrudate with a PGE of 0.1%. Color difference, water soluble index, and water absorption index were highest in the control. The results reveal that some physical properties of extruded psyllium husk were improved with the addition of emulsifiers. This finding provides useful information for the development of psyllium snacks with good physical characteristics.