Browse > Article
http://dx.doi.org/10.14478/ace.2022.1029

Effect of Modification PP on the Physical Properties and CNF Dispersion of PP Powder/CNF 1 wt% Slurry Composite  

Kim, Jun Seok (Korea Automotive Technology Institute)
Kim, Youn Cheol (Major in Polymer Science and Engineering, Kongju National University)
Publication Information
Applied Chemistry for Engineering / v.33, no.3, 2022 , pp. 284-288 More about this Journal
Abstract
Polypropylene (PP) powder/cellulose nanofibers (CNF) 1 wt% slurry composites were prepared by filtering their suspension under reduced pressure and dried them in an oven followed by the use of a twin screw extruder. PP modified with side branches and polar groups was used. The side branches and polar groups were introduced into PP by using divinylbenzene and maleic anhydride (MAH), respectively. As a result of examining the dispersibility of CNF and the physical properties of the composite, it was confirmed that the composite prepared from PP powder/CNF 1 wt% slurry showed equal or higher levels in tensile and flexural strength as compared with those using the composite prepared from CNF powder.
Keywords
CNF slurry; Modified PP; Dispersion; Composites;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Q. Chen, R. P. Garcia, J. Munoz, U. Perez de Larraya, N. Garmendia, Q. Yao, and A. R. Boccaccini, Cellulose nanocrystals bioactive glass hybrid coating as bone substitutes by electrophoretic co-deposition: In situ control of mineralization of bioactive glass and enhancement of osteoblastic performance, ACS Appl. Mater. Interfaces, 7, 24715-24725 (2015).   DOI
2 B. Y. Kim, J. Moon, M. J. Yoo, S. Kim, J. Kim, and H. Yang, Surface-modified cellulose nanofibril surfactants for stabilizing oil-in-water emulsions and producing polymeric particles, Appl. Chem. Eng., 32, 110-116 (2021).   DOI
3 A. Iwatake, M. Nogi, and H. Yano, (2008), Cellulose nanofiber-reinforced polylactic acid, Compos. Sci. Technol., 68, 2103-2106 (2008).   DOI
4 H. Yano, H. Omura, Y. Honma, H. Okumura, H. Sano, and F. Nakatsubo, Designing cellulose nanofiber surface for high density polyethylene reinforcement, Cellulose, 25, 3351-3362 (2018).   DOI
5 H. J. Yoon, B. M. Gil, J. H. Lee, J. E. Park, J. Lim, M. J. Jo, K. Jung, and J. J. Wie, Thermal and mechanical properties of polypropylene/cellulose nanofiber composites, Polymer (Korea), 44, 255-263 (2020).   DOI
6 S. W. Kim and B. T. Yoon, Effect of nanocellulose on the mechanical and self-shrinkage properties of cement composites, Appl. Chem. Eng., 27, 380-385 (2016).   DOI
7 I. H. Hwang, S. Y. Choi, S. H. Lee, Y. H. Lee, S. M. Lee, S. C. Kim, and S. S. Kim, Electrospinning method-based CNF properties analysis and its application to electrode in electrolysis process, Appl. Chem. Eng., 28, 257-262 (2017).   DOI
8 M. A. Usmani, I. Khan, U. Gazal, M. K. Mohamad Haafiz, and A. H. Bhat, Interplay of polymer bionanocomposites and significance of ionic liquids for heavy metal removal, Compos. Sci. Eng., 441-463 (2018).
9 J. C. Lee, J. A. Lee, D. Y. Lim, and K. Y. Kim, Fabrication of cellulose nanofiber reinforced thermoplastic composites, Fibers Polym., 19, 1753-1759 (2018).   DOI
10 T. Wang and L. T. Drzal, Cellulose-nanofiber-reinforced poly (lactic acid) composites prepared by a water-based approach, ACS Appl. Mater. Interfaces, 4, 5079-5085 (2012).   DOI
11 A. Bhatnagar and M. Sain, Processing of cellulose nanofiberreinforced composites, J. Reinf. Plast. Compos., 24, 1259-1268 (2005).   DOI
12 F. H. Su and H. X. Huang, Influence of polyfunctional monomer on melt strength and rheology of long-chain branched polypropylene by reactive extrusion, J. Appl. Polym. Sci., 116, 2557-2565 (2010).   DOI
13 K. Yuwawech, J. Wootthikanokkhan, and S. Tanpicha, Effects of two different cellulose nanofiber types on properties of poly(vinyl alcohol) composite films, J. Nanomater., 1, 1-10 (2015).
14 H. M. Yadav, J. D. Park, H. C. Kang, J. Kim, and J. J. Lee, Cellulose nanofiber composite with bimetallic zeolite imidazole framework for electrochemical supercapacitors, Nanomaterials, 11, 395-401 (2021).   DOI
15 J. S. Kim and Y. C. Kim, Effect of polypropylene branching and maleic anhydride graft on CNF dispersity of polypropylene (PP)/cellulose nanofiber (CNF) composite, Polymer (Korea), 44, 861-867 (2020).   DOI
16 L. Cui, Z. Zhou, Y. Zhang, X. Zhang, and W. Zhou, Rheological behavior of polypropylene/novolac blends, J. Appl. Polym. Sci., 106, 811-816 (2007).   DOI
17 C. R. Herrero and J. L. Acosta, Effect of poly(epichlorhydrin) on the crystallization and compatibility behavior of poly(ethylene oxide)/polyphosphazene blends, Polym. J., 26, 786-796 (1994).   DOI
18 G. H. D. Tonoli, E. M. Teixeira, A. C. Correa, J. M. Marconcini, L. A. Caixeta, M. A. Pereira-da-Silva, and L. H. C. Mattoso, Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties, Carbohydr. Polym., 89, 80-88 (2012).   DOI
19 C. Eyholzer. Dried nanofibrillated cellulose and its bionanocomposites, Ph.D. Dissertation, Lulea University of Technology, Sweden, (2011).
20 F. W. Herrick, R. L. Casebier, J. K. Hamilton, and K. R. Sandberg, Microfibrillated cellulose: morphology and accessibility. J. Appl. Polym. Sci.: Appl. Polym. Symp, 37, NY, USA, May 24 (1982).