• 제목/요약/키워드: extruder screw

검색결과 268건 처리시간 0.027초

Influence of Extrusion on the Solubility of Defatted Soybean Flour in Enzymatic Hydrolysis

  • Cha, Jea-Yoon;Shin, Han-Seung;Cho, Yong-Jin;Kim, Chong-Tai;Kim, Chul-Jin
    • Food Science and Biotechnology
    • /
    • 제16권4호
    • /
    • pp.543-548
    • /
    • 2007
  • Low-energy processing technology, which enhances the utility of defatted soybean flour (DSF), was developed using extrusion processing. DSF was extruded at different conditions using a twin screw extruder and then, dried at $40^{\circ}C$ for 20 hr. The nitrogen solubility index (NSI), viscosity, water solubility index (WSI), and water absorption index (WAI) of DSF increased after extrusion processing. The density of DSF extrudates decreased with the decrease in water content from 53 to 33% and the increase in extrusion temperature from 110 to $160^{\circ}C$. The addition of NaOH from 1.2 to 1.8% and citric acid from 1 to 5% increased the total solubility (TS) of DSF due to the decrease of protein coiling and hydrophobic bonds formation during extrusion processing. When viscozyme was reacted first, TS, NSI, and soluble carbohydrate content of DSF hydrolysates increased about 12, 6, and 7%, respectively, compared to them reacted with protease first. The TS and NSI of DSF hydrolysates were increased about 15 and 10%, respectively, by extrusion processing at alkaline and acidic pH. Extrusion processing at alkaline and acidic pH contributed the increase of efficiency to hydrolyze DSF samples using enzyme.

PPS/ABS 블렌드의 동력학적/기계적 특성 (Dynamic and Mechanical Properties of PPS/ABS Blends)

  • 이영관;김준명;이미영;남재도;박연흠;박찬석
    • 폴리머
    • /
    • 제26권1호
    • /
    • pp.139-144
    • /
    • 2002
  • 본 연구에서는 PPS와 ABS의 물성을 상호보완하며, 두 성분간의 상용성을 향상시키기 위해 반응압출법을 이용하여 maleic anhydride(MAH)를 ABS에 치환시켜 MABS를 제조하였으며, ABS의 화학적 개질이 블렌드의 기계적 및 동력학적 물성에 미치는 영향을 관찰하였다. 동력학적 특성 분석을 통하여서는 PPS/MABS 블렌드가 거의 전조성 영역에서 단일 유리전이온도를 가짐을 확인하였다. 블렌드의 기계적 성질은, 상용화제를 포함하고 있는 블렌드가 더욱 강한 인장강도, 굴곡강도, 충격강도 등을 나타냄을 확인하였다. 이는 상용화제의 도입으로 인해 분산상과 매트릭스 사이의 계면장력이 낮아져 분산상의 크기가 작아지며 계면간의 상호작용이 증진되어 물성이 향상되었기 때문이다.

Dilauroyl Peroxide의 PP에 대한 기계적, 열적 성질 변화 (Influence of Dilauroyl Peroxide on Mechanical and Thermal Properties of Different Polypropylene Matrices)

  • Sirin, Kamil;Yavuz, Mesut;Canli, Murat
    • 폴리머
    • /
    • 제39권2호
    • /
    • pp.200-209
    • /
    • 2015
  • In this study, the influence of dilauroyl peroxide on mechanical and thermal properties of different polypropylene (PP) matrices was investigated. Polypropylene matrices, different molecular weight isotactic PP containing 0.01, 0.02, 0.04, 0.06, 0.08, and 0.1 wt% of dilauroyl peroxide (DLP) were prepared by using a single-screw extruder. The effect of the visbreaking agent (DLP) on mechanical, physical, thermal and morphological properties of different molecular weight PP had been studied. Mechanical properties (tensile strength at break point, at yield and elongation at break point), melt flow index (MFI), scanning electron microscope (SEM) and differential scanning calorimetric (DSC) analyses of these matrices were examined. Melting ($T_m$) and crystallization ($T_c$) temperatures, crystallinity ratio (%) and enthalpies were determined. The microstructure of isotactic polypropylene matrix was investigated by scanning electron microscopy (SEM). From SEM analysis, it was observed that the surface disorder increased by the increasing amount of DLP. As a result of DSC analyses, the crystallinity ratio of the PP matrices has varied between 1.64-7.27%. Mechanical properties of the matrices have been improved. Particularly, the mechanical tests of PP have given interesting results when compounded with 0.06-0.08 wt% dilauroyl peroxide (DLP). Mechanical properties and thermal decomposition processes were all changed by increasing the amount of DLP in the matrix structure.

Effects of PP-g-MAH on the Mechanical, Morphological and Rheological Properties of Polypropylene and Poly(Acrylonitrile-Butadiene-Styrene) Blends

  • Lee, Hyung-Gon;Sung, Yu-Taek;Lee, Yun-Kyun;Kim, Woo-Nyon;Yoon, Ho-Gyu;Lee, Heon-Sang
    • Macromolecular Research
    • /
    • 제17권6호
    • /
    • pp.417-423
    • /
    • 2009
  • The effects of maleic anhydride-grafted polypropylene (PP-g-MAH) addition on polypropylene (PP) and poly(acrylonitrile-butadiene-styrene) (ABS) blends were studied. Blends of PP/ABS (70/30, wt%) with PP-g-MAH were prepared by a twin-screw extruder. From the results of mechanical testing, the impact, tensile and flexural strengths of the blends were maximized at a PP-g-MAH content 3 phr. The increased mechanical strength of the blends with the PP-g-MAH addition was attributed to the compatibilizing effect of the PP and ABS blends. In the morphological studies, the droplet size of ABS was minimized (6.6 ${\mu}m$) at a PP-g-MAH content of 3 phr. From the rheological examination, the complex viscosity was maximized at a PP-g-MAH content of 3 phr. These mechanical, morphological and rheological results indicated that the compatibility of the PP/ABS (70/30) blends is increased with PP-g-MAH addition to an optimum blend at a PP-g-MAH content of 3 phr.

The effect of nano-titanium dioxide on the self-cleaning properties of TiO2-PP composite fibers

  • Panutumrong, Praripatsaya;Metanawin, Siripan;Metanawin, Tanapak
    • International Journal of Advanced Culture Technology
    • /
    • 제3권2호
    • /
    • pp.25-33
    • /
    • 2015
  • This study aims to synthesis the self-cleaning fibers. The nano-titanium dioxide ($TiO_2$) were blend with the polypropylene (grade 561R) at 1wt%, 3wt%, 5wt%, 10wt%, 15wt% and 20wt%. The $TiO_2$-fibers were obtained from single screw extruder. The mechanical, thermal, rheology and self-cleaning properties were also investigated. The results showed that the tensile strength of the $nTiO_2$-PP fibers decreased with increasing of the amount of $TiO_2$. The presents of the $TiO_2$ in the PP fibers significantly showed the improving of the self-cleaning properties under sunlight and 20 watt of UV radiation. The $TiO_2$-PP fibers in presents of $TiO_2$ 20wt% showed the best results of self-cleaning under 5 hours of the sunlight which the similar results were found under 5 hours of 20 watts of UV radiation.

Linear Low Density Polyethylene (LLDPE)/Zeolite Microporous Composite Film

  • Jagannath Biswas;Kim, Hyun;Soonja Choe;Patit P. Kundu;Park, Young-Hoon;Lee, Dai-Soo
    • Macromolecular Research
    • /
    • 제11권5호
    • /
    • pp.357-367
    • /
    • 2003
  • The linear low density polyethylene (LLDPE)/zeolite composite using novel inorganic filler, zeolite, is prepared by a conventional compounding procedure using a twin-screw extruder. The observed scanning electron microscopic (SEM) morphology shows a good dispersion and adhesion of zeolite in the LLDPE matrix. The mechanical properties in terms of the Young's modulus, the yield stress, the impact strength, and the elongation at break were enhanced with a successive increment of zeolite content up to 40 wt%. The X-ray diffraction measurement is of supportive for the improved mechanical properties and the complex melt viscosity is as well. Upon applying a certain level of strain on the composites, the dewetting, the air hole formation and its growth are characterized. The dewetting originates around the filler particles at low strain and induces elliptical micropores upon further stretching. The microporosity such as the aspect ratio, the number and the total area of the air holes is also characterized. Thus, the composites loaded 40 % zeolite and 300 % elongation may be applicable for breathable microporous films with improved modulus, impact and yield stress, elongation at break, microporosity and air hole properties.

Mechanical and thermal properties of Homo-PP/GF/CaCO3 hybrid nanocomposites

  • Parhizkar, Mehran;Shelesh-Nezhad, Karim;Rezaei, Abbas
    • Advances in materials Research
    • /
    • 제5권2호
    • /
    • pp.121-130
    • /
    • 2016
  • In an attempt to reach a balance of performances in homo-polypropylene based system, the effects of single and hybrid reinforcements inclusions comprising calcium carbonate nanoparticles (2, 4 and 6 phc) and glass fibers (10 wt.%) on the mechanical and thermal properties were investigated. Different samples were prepared by employing twin-screw extruder and injection molding machine. In morphological studies, the uniform distribution of glass fibers in PP matrix, relative adhesion between glass fibers and polymer, and existence of nanoparticles in polymer matrix were observed. $PP/CaCO_3$ (6 phc) as compared to pure PP and PP/GF had superior tensile and flexural strengths, impact resistance and deformation temperature under load (DTUL). $PP/GF/CaCO_3$ (6 phc) composite displayed comparable tensile and flexural strengths and impact resistance to neat PP, while its tensile and flexural moduli and deformation temperature under load (DTUL) were 436%, 99% and $26^{\circ}C$greater respectively. The maximum impact resistance was observed in $PP/CaCO_3$(6 phc). The highest DTUL was perceived in PP hybrid nanocomposite containing 10 wt.% glass fiber and 4 phc $CaCO_3$ nanoparticle.

PPS/ABS 블렌드의 형태학적/열적 특성 (Morphology and Thermal Properties of PPS/ABS Blends)

  • 이영관;김준명;남재도;박찬석;장승필
    • 폴리머
    • /
    • 제24권3호
    • /
    • pp.366-373
    • /
    • 2000
  • 본 연구에서는 poly(phenylene sulfide)(PPS)와 ABS의 물성을 상호보완하기 위하여 블렌드를 제조하였다. 각 성분간의 상용성을 증진시키기 위하여 소량의 무수말레인산을 ABS에 반응시켜 MABS (ABS-g-MAH)를 제조하였으며, PPS/ABS 및 PPS/MABS 블렌드는 이축 혼련 압출기를 이용하여 용융 흔합하였다. 블렌드에서 ABS의 화학적 개질이 블렌드의 모폴로지와 열적 성질에 미치는 영향을 관찰하였다. PPS/MABS 블렌드의 경우, 각 성분간에 강한 인력이 형성되는 것을 광학현미경과 SEM을 이용하여 확인하였으며, DMA 분석에서는 단일 유리전이 온도를 확인하였다. 또한 화학적으로 개질된 MABS를 사용한 PPS/MABS의 블렌드는 PPS/ABS보다 향상된 열적 성질을 나타내었다.

  • PDF

Effects of Intercalant on the Dispersibility of Silicate Layers in Clay- dispersed Nanocomposite of Poly(styrene-co-acrylonitrile) Copolymer

  • Ko, Moon-Bae;Park, Min;Kim, Junkyung;Choe, Chul-Rim
    • Macromolecular Research
    • /
    • 제8권2호
    • /
    • pp.95-101
    • /
    • 2000
  • Clay/poly(styrene-co-acrylonitrile) copolymer (SAN) hybrids have been prepared by simple meltmixing of two components, SAN and organophilic clays with a twin screw extruder. Effects of intercalant on the dispersibility of silicate layers in clay-dispersed nanocomposite were studied by using five different organophilic clays modified with the intercalants of different chemical structures and different fractions of intercalant. The dispersibility of 10-$\AA$-thick silicate layers of clay in the hybrid was investigated by using an X-ray diffractometer and a transmission electron microscope. It was found that if the fraction of intercalant in the organophilic clay becomes too high, SAN is difficult to intercalate into the inter-gallery of silicate layers in the hybrid prepared at 180$\^{C}$, and thus the hybrid shows poor dispersibility of silicate layers. The flexural modulus of the hybrid increases as the dispersibility of silicate layers in the hybrid increases.

  • PDF

Electrical Properties of CNT and Carbon Fiber Filled Hybrid Composites Based on PA66

  • Lee, Minji;Park, Se-Ho;Jhee, Kwang-Hwan;Kye, Hyoungsan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • 제56권2호
    • /
    • pp.65-71
    • /
    • 2021
  • In recent times, the demand for electronic devices has increased because of advancements in the electronics industry. Consequently, research on shielding against electromagnetic interference (EMI) from electronic devices has also progressed significantly. In particular, research on imparting electrical conductivity to plastic has seen substantial progress. In this study, the effect of hybrid fillers comprising carbon fiber (CF) and carbon nanotubes (CNTs) on the electrical properties of polyamide 66 (PA66) composites was investigated. PA66 composites were prepared using a BUSS Co-Kneader single-screw extruder. EMI shielding effectiveness (SE) increased with the increasing addition of unsized CF (UCF), sized CF (SCF), and CNTs. For the PA66/SCF/CNT hybrid filler composites, EMI SE significantly increased with the increase in SCF content. Finally, the hybrid filler comprising SCF and CNTs may have a synergistic effect on the EMI SE and surface resistivity of PA66/SCF/CNT composites.