• Title/Summary/Keyword: extruded hemp

Search Result 3, Processing Time 0.014 seconds

Influence of Extruded Hemp-Rice Flour Addition on the Physical Properties of Wheat Bread

  • Wang, Yuan-Yuan;Norajit, Krittika;Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.1
    • /
    • pp.62-66
    • /
    • 2011
  • Functional foods play an important role in daily diet, human health and the food industry. Hemp was reported to have many advantages for nutritional and medicinal usage. In this study, extruded hemp-rice (EHR) flour, containing 30% hemp, was mixed with the wheat flour to create bread loaves at the concentrations of 5, 10 and 15%. Bread made from 100% wheat flour (with no added EHR flour) was used as a control. The physical parameters, including expansion ratio, specific volume and crust/crumb color were evaluated separately. In addition, changes in hardness of the bread during storage at ambient temperature for 3 days were also studied. The results showed that 10%-EHR bread exhibited the highest hardness value, while 15%-EHR bread presented the lowest. The bread containing EHR flour had lower specific volume and bigger air cells compared to the control. Moreover, the crust and crumb color of EHR-containing bread was significantly darker than those of the control. In this study, the 15%-EHR bread showed higher specific volume, lower hardness and bigger air cell structures.

Physicochemical Properties of Extruded Defatted Hemp Seed and Its Energy Bar Manufacturing (압출성형 삼종실의 이화학적 특성과 에너지바의 제조)

  • Gu, Bon-Jae;Norajit, Krittika;Ryu, Gi-Hyung
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.127-134
    • /
    • 2010
  • This study was to develop high-nutritious energy bar from extruded hemp obtained by extrusion process. Mixture of rice flour and defatted hemp was extruded at a barrel temperature of 110 and 130$^{\circ}C$, and moisture content of 20 and 25%. Properties of extrudates such as bulk density, expansion index, breaking strength, apparent elastic modulus, water absorption index (WAI), water solubility index (WSI) have been analyzed. The antioxidant potential was determined by the DPPH-radical scavenging assay. The expansion index was the highest in rice-hemp extrudate at 130$^{\circ}C$ barrel temperature and 20% moisture content among the other hemp-added extrudates. The WAI was increased with increase in moisture content, while the WSI was increased with increase in barrel temperature. The peak viscosity of rice extrudate had higher valule than those of extrudate added with hemp. DPPH scavenging activity of rice-hemp extrudate at 130$^{\circ}C$ barrel temperature and 20% moisture content showed the highest value. Sensory properties, moisture content and color were assessed for quality of energy bar. The color values of the energy bar indicated decreasing L (lightness) and b (yellowness), and increasing a (redness) after 30 days storage at ambient condition. The highest overall acceptable was the energy bar added with rice-hemp extrudate at 130$^{\circ}C$ barrel temperature and 20% moisture content.

Manufacturing of Hemp Seed Flake by Using Extrusion Process (압출성형공정을 이용한 삼 종자 후레이크 제조)

  • Tie, Jin;Gu, Bon-Jae;Ryu, Gi-Hyung
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.99-105
    • /
    • 2010
  • Proximate composition of whole hemp seed, paste viscosity of whole hemp seed pellets, bulk density, color, compression force, water solubility and absorption index and bowl life of whole hemp seed flakes manufactured by extrusion process were determined to evaluate whole hemp seed as flake additive. Extrusion process conditions were 35% of moisture content and 90, 100 and 110$^{\circ}C$ of barrel temperature. Content of moisture content, crude protein, crude fat, crude ash from whole hemp seed were 5.67${\pm}$0.02%, 25.93${\pm}$0.16%, 28.21${\pm}$0.56% and 7.70${\pm}$0.08%, respectively. The pellets hemp seed at 100 or 110$^{\circ}C$ had higher paste viscosity as compared to those pellet at 90$^{\circ}C$. The bulk density values of all hemp seed flakes were between 0.24 to 0.43 g/mL, depending on the barrel temperatures. The hardness of flake increased with decreasing percentage of hemp seed in flakes. An increase in barrel temperature from 90$^{\circ}C$ to 110$^{\circ}C$ resulted in increase of WSI and decrease of WAI. The bowl life of hemp seed flakes was increased from 5.8 to 15.5 min with the decrease in percentage of hemp seed. The highest overall quality was showed in flake added with 20% of hemp seed.