• 제목/요약/키워드: extreme wind speed

검색결과 134건 처리시간 0.027초

Towards a revised base wind speed map for the United Kingdom

  • Miller, Craig A.;Cook, Nicholas J.;Barnard, Richard H.
    • Wind and Structures
    • /
    • 제4권3호
    • /
    • pp.197-212
    • /
    • 2001
  • Observations of extreme wind speeds in the United Kingdom from 1970 to 1980, corrected for the influence of upwind ground roughness and topography, have been analysed using the recently-developed "Improved Method of Independent Storms" (IMIS). The results have been used to compile two new maps of base wind speed and to confirm the climatic factors in current use. One map is 'irrespective' of wind direction and the other is 'equally weighted' by direction. The 'equally weighted' map is expected to be more consistently reliable and appropriate for use with the climatic factors for the design of buildings and structures.

Prediction of typhoon design wind speed and profile over complex terrain

  • Huang, W.F.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • 제45권1호
    • /
    • pp.1-18
    • /
    • 2013
  • The typhoon wind characteristics designing for buildings or bridges located in complex terrain and typhoon prone region normally cannot be achieved by the very often few field measurement data, or by physical simulation in wind tunnel. This study proposes a numerical simulation procedure for predicting directional typhoon design wind speeds and profiles for sites over complex terrain by integrating typhoon wind field model, Monte Carlo simulation technique, CFD simulation and artificial neural networks (ANN). The site of Stonecutters Bridge in Hong Kong is chosen as a case study to examine the feasibility of the proposed numerical simulation procedure. Directional typhoon wind fields on the upstream of complex terrain are first generated by using typhoon wind field model together with Monte Carlo simulation method. Then, ANN for predicting directional typhoon wind field at the site are trained using representative directional typhoon wind fields for upstream and these at the site obtained from CFD simulation. Finally, based on the trained ANN model, thousands of directional typhoon wind fields for the site can be generated, and the directional design wind speeds by using extreme wind speed analysis and the directional averaged mean wind profiles can be produced for the site. The case study demonstrated that the proposed procedure is feasible and applicable, and that the effects of complex terrain on design typhoon wind speeds and wind profiles are significant.

태풍시기의 강풍피해 예측을 위한 지상풍 산정에 관한 연구(I) (The Study on the Strong Wind Damage Prediction for Estimation Surface Wind Speed of Typhoon Season(I))

  • 박종길;정우식;최효진
    • 한국환경과학회지
    • /
    • 제17권2호
    • /
    • pp.195-201
    • /
    • 2008
  • Damage from typhoon disaster can be mitigated by grasping and dealing with the damage promptly for the regions in typhoon track. What is this work, a technique to analyzed dangerousness of typhoon should be presupposed. This study estimated 10 m level wind speed using 700 hPa wind by typhoon, referring to GPS dropwindsonde study of Franklin(2003). For 700 hPa wind, 30 km resolution data of Regional Data Assimilation Prediction System(RDAPS) were used. For roughness length in estimating wind of 10 m level, landuse data of USGS are employed. For 10 m level wind speed of Typhoon Rusa in 2002, we sampled AWS site of $7.4{\sim}30km$ distant from typhoon center and compare them with observational data. The results show that the 10 m level wind speed is the estimation of maximum wind speed which can appear in surface by typhoon and it cannot be compared with general hourly observational data. Wind load on domestic buildings relies on probability distributions of extreme wind speed. Hence, calculated 10 m level wind speed is useful for estimating the damage structure from typhoon.

Capacity of a transmission tower under downburst wind loading

  • Mara, T.G.;Hong, H.P.;Lee, C.S.;Ho, T.C.E.
    • Wind and Structures
    • /
    • 제22권1호
    • /
    • pp.65-87
    • /
    • 2016
  • The wind velocity profile over the height of a structure in high intensity wind (HIW) events, such as downbursts, differs from that associated with atmospheric boundary layer (ABL) winds. Current design codes for lattice transmission structures contain only limited advice on the treatment of HIW effects, and structural design is carried out using wind load profiles and response factors derived for ABL winds. The present study assesses the load-deformation curve (capacity curve) of a transmission tower under modeled downburst wind loading, and compares it with that obtained for an ABL wind loading profile. The analysis considers nonlinear inelastic response under simulated downburst wind fields. The capacity curve is represented using the relationship between the base shear and the maximum tip displacement. The results indicate that the capacity curve remains relatively consistent between different downburst scenarios and an ABL loading profile. The use of the capacity curve avoids the difficulty associated with defining a reference wind speed and corresponding wind profile that are adequate and applicable for downburst and ABL winds, thereby allowing a direct comparison of response under synoptic and downburst events. Uncertainty propagation analysis is carried out to evaluate the tower capacity by considering the uncertainty in material properties and geometric variables. The results indicated the coefficient of variation of the tower capacity is small compared to those associated with extreme wind speeds.

CGCM3 전지구모형에 의한 한반도 미래 일평균 풍속의 평가 (Estimation of Future Daily Wind Speed over South Korea Using the CGCM3 Model)

  • 함희정
    • 산업기술연구
    • /
    • 제33권A호
    • /
    • pp.41-48
    • /
    • 2013
  • A statistical downscaling methodology has been developed to investigate future daily wind speeds over South Korea. This methodology includes calibration of the statistical downscaling model by using large-scale atmospheric variables encompassing NCEP/NCAR reanalysis data, validation of the model for the calibration period, and estimation of the future wind speed based on the general circulation model (GCM) outputs of scenario A1B of the CGCM3. Based on the scenario A1B of the CGCM3 model, the potential impacts of climate change on the daily surface wind speed is relatively small (+/- 1m/s) in South Korea.

  • PDF

Thermal Insulation of Protective Clothing Materials in Extreme Cold Conditions

  • Mohamed Zemzem;Stephane Halle;Ludwig Vinches
    • Safety and Health at Work
    • /
    • 제14권1호
    • /
    • pp.107-117
    • /
    • 2023
  • Background: Thermophysiological comfort in a cold environment is mainly ensured by clothing. However, the thermal performance and protective abilities of textile fabrics may be sensitive to extreme environmental conditions. This article evaluated the thermal insulation properties of three technical textile assemblies and determined the influence of environmental parameters (temperature, humidity, and wind speed) on their insulation capacity. Methods: Thermal insulation capacity and air permeability of the assemblies were determined experimentally. A sweating-guarded hotplate apparatus, commonly called the "skin model," based on International Organization for Standardization (ISO) 11092 standard and simulating the heat transfer from the body surface to the environment through clothing material, was adopted for the thermal resistance measurements. Results: It was found that the assemblies lost about 85% of their thermal insulation with increasing wind speed from 0 to 16 km/h. Under certain conditions, values approaching 1 clo have been measured. On the other hand, the results showed that temperature variation in the range (-40℃, 30℃), as well as humidity ratio changes (5 g/kg, 20 g/kg), had a limited influence on the thermal insulation of the studied assemblies. Conclusion: The present study showed that the most important variable impacting the thermal performance and protective abilities of textile fabrics is the wind speed, a parameter not taken into account by ISO 11092.

단기 풍관측에 의한 교량현장 기본풍속 추정 (Estimation of Basic Wind Speed at Bridge Construction Site Based on Short-term Measurements)

  • 이성로;김상우
    • 대한토목학회논문집
    • /
    • 제33권4호
    • /
    • pp.1271-1279
    • /
    • 2013
  • 본 논문에서는 단기 관측자료를 활용하여 장대교량 현장의 기본풍속을 추정하는 방법에 대한 연구를 수행하였다. 기상관측소로부터 거리가 먼 장대교량의 내풍설계시 현장의 기본 풍속을 추정하기 위해 현장의 장기 풍속자료를 통계처리하는 것이 필요하다. 현장에 풍관측탑을 설치하고 단기간의 풍관측 자료를 확보하였고 선형회귀분석 및 MCP 방법을 이용하여 인근 기상관측소와의 상관관계를 분석하였다. 기상관측소의 장기풍자료를 지형보정을 한 후 상관관계식에 의해 현장의 장기 풍속자료를 얻었고 풍속자료의 극치 확률분포 분석에 의해 기본풍속 산정을 할 수 있었다. 연구결과에서는 선형회귀분석의 방법이 MCP 방법에 비해 풍속을 낮게 추정하고 있으며, 향후 여러 현장에서 일련의 상관관계 분석을 수행한다면 종합적으로 두 방법에 의한 기본풍속 산정의 차이를 보다 명확히 보여줄 것이다. 또한, 장기자료의 질 관리가 풍속추정에 매우 중요하다는 것을 보여주고 있다.

Reliability and code level

  • Kasperski, Michael;Geurts, Chris
    • Wind and Structures
    • /
    • 제8권4호
    • /
    • pp.295-307
    • /
    • 2005
  • The paper describes the work of the IAWE Working Group WBG - Reliability and Code Level, one of the International Codification Working Groups set up at ICWE10 in Copenhagen. The following topics are covered: sources of uncertainties in the design wind load, appropriate design target values for the exceedance probability of the design wind load for different structural classes with different consequences of a failure, yearly exceedance probability of the design wind speed and specification of the design aerodynamic coefficient for different design purposes. The recommendations from the working group are summarized at the end of the paper.

국내 풍하중의 확률적 특성 분석 (Probabilistic Analysis of Wind Loads)

  • 김상효;배규웅;박홍석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1990년도 봄 학술발표회 논문집
    • /
    • pp.31-36
    • /
    • 1990
  • The probabilistic characteristics of wind loads have been analyzed using statistical data on wind speeds, pressure coefficient, exposure coefficient, and gust factor. The wind speed data collected in 25 nationwide weather stations have been modified to be consistent in measuring height, exposure condition as well as averaging time, Having performed Monte Carlo simulation for various heights and site conditions, the statistical models of wind loads were determined, in which Type-I extreme value distribution has been applied. The models also incorporate a reduction factor of 0.85 to account for the reduced probability that the maximum wind speed will occur in a direction most unfavorable to the response of structure.

  • PDF

태풍 시뮬레이션을 통한 한반도 극한풍속 추정 (Estimation of Extreme Wind Speeds in Korean Peninsula using Typhoon Monte Carlo Simulation)

  • 이승수;김가영
    • 한국전산구조공학회논문집
    • /
    • 제29권2호
    • /
    • pp.141-148
    • /
    • 2016
  • 국내 서해대교, 인천대교와 같은 장대교량은 대부분 빈번하게 태풍에 의해 영향을 받는 해안에 위치하였으며, 교량의 길이가 긴 만큼 풍하중에 의한 영향이 다른 하중에 비해 상대적으로 크기 때문에 내풍 안정성을 확보하기 위해 정확한 설계풍속을 산정하는 것이 매우 중요하다. 본 연구에서는 태풍의 기후학적 특성 인자로 중심기압깊이, 태풍이동속도, 태풍이동방향, 최단접근거리를 결정하였으며, 태풍의 기후학적 특성들의 확률 분포를 추정하고, 바람장 모형과 중심기압상승 모형을 적용하여 몬테카를로 시뮬레이션을 실시하였다. 분석결과, 대체적으로 제주도와 남해안 지역의 재현기간 풍속이 크게 나오며 고위도로 갈수록 작아지는 특징을 나타냈다. 이와 같은 특징이 나타난 가장 큰 원인은 고위도 분석지점 표본 태풍의 중심기압이 저위도 분석지점 표본 태풍의 중심기압보다 높기 때문으로 판단되며, 또한 우리나라에 해상에서 육지로 이동하면서 쇠퇴기를 겪어 점차 약해지기 때문인 것으로 분석되었다. 또한, 시뮬레이션 결과를 도로교 설계기준 100년 재현기간 풍속(10분 평균, 지상 10m, 지표조도 II)과 비교한 결과, 태풍시뮬레이션의 결과가 낮게 나타났으며, 이러한 점을 볼 때 도로교 설계기준의 기본 풍속이 높게 산정되어 있다고 판단되며, 기상자료 분석과 같은 추가적인 연구를 통해 기본풍속 조정에 대한 연구가 수행 되어야 할 것으로 사료된다.