• Title/Summary/Keyword: extreme velocity

검색결과 105건 처리시간 0.033초

장방형 침전지 유입 정류벽 유공비의 지내 수리거동에 미치는 영향 연구 (The Effect of Open Ratio of the Inlet Baffle on Hydraulic Behavior within a Rectangular Sedimentation Basin)

  • 박노석;김성수;임성은;이두진;서인석
    • 상하수도학회지
    • /
    • 제23권3호
    • /
    • pp.345-352
    • /
    • 2009
  • The purpose of inlet baffle is to distribute the flow uniformly over the entire cross-sectional area of the sedimentation basin. The goal when designing this baffle is to achieve some head loss while keeping the velocity gradients through the ports equal to the velocity gradient in the end of the flocculator, so as to not break up the flocs. Sedimentation tank performance is strongly influenced by hydrodynamic and physical effects such as inlet design. This study was conducted to evaluate the effect of open ratio of the inlet baffle on hydraulic behavior within a rectangular sedimentation basin using CFD simulation and ADV technique. In order to verify the CFD simulation, we measured the factual velocity at 18 points in the full-scale sedimentation basin at Y water treatment plant. Good agreement was obtained between the CFD predictions and the experimentally measured data. From the simulation results of the existing basin with 7.4 % open ratio, it was investigated that extreme decrease in velocity occurred in the middle of basin. Since then, flow features was unstable. The region which the velocity decrease rapidly moved forward to the flow direction in proportion to the increase of inflow velocity. Also, it was investigated that the flow characteristic of 6.0 % open ratio was significantly different from 7.4 % open ratio at the same configuration condition. These results are a clear indication that inflow momentum and open ratio are the parameters affecting the characteristics of hydraulic patterns. The influence of these parameters on the sedimentation performance requires further study.

Probing the Feedback Process in Local Type-2 AGNs with Integral-Field Spectroscopy

  • Luo, Rongxin;Woo, Jong-Hak;Shin, Jaejin;Kang, Daeun;Bae, Hyun-Jin;Karouzos, Marios
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.36.3-36.3
    • /
    • 2019
  • Feedback process is one of the most important topics in the study of AGNs since it plays a key role in linking the SMBHs and their host galaxies. In order to further understand the co-evolution of SMBHs and their host galaxies, we probe the feedback process in local type-2 AGNs with a series of integral-field-spectroscopy observations. In the first part of my talk, I will introduce our GMOS observations of luminous type-2 AGNs at z < 0.1, which are selected using the integrated [O III] kinematics. Based on the dedicated emission-line diagnostics and kinematic studies, we identify the signatures of AGN-driven outflows and quantify the outflow size in the targets with extreme [O III] kinematics. For the targets without extreme [O III] kinematics, we find the presence of weak AGN-driven outflows, which are indicated by the significant differences between the kinematics of gas and stars. Then, I will present our recent study of 40 type-2 AGNs based on the SNIFS IFU. By comparing the radial profile of velocity dispersion of gas and stars, we measure the size of AGN-driven outflows in these targets and extend the outflow size-AGN luminosity relation in our previous GMOS studies. We also discuss the feedback effect of AGN-driven outflows by connecting the outflow velocity and host galaxy properties. These results highlight the importance of spatially-resolved observation in investigating gas kinematics and identifying the signatures of AGN-driven outflows.

  • PDF

감조하천에서 조위 및 유량조건에 따른 역류 분석 (Analysis of Flow Reversal by Tidal Elevation and Discharge Conditions in a Tidal River)

  • 송창근;김형준;이동섭
    • 한국안전학회지
    • /
    • 제29권6호
    • /
    • pp.104-110
    • /
    • 2014
  • The Han River is the only waterway in Korea where estuary is not blocked by dykes so that tidal water is flowing in and out through the tidal reach. The extreme tidal range in the Yellow Sea causes an intense flood current, stretching over horizontal extents of tens of kilometers into the rivers. To elucidate the flow reversal by discharge conditions and transient tidal level in the Han river, numerical simulations were conducted under 7 boundary conditions for two days with 10 minute time step. As the flow conditions changed from low discharge and high tidal difference to high discharge and low tidal difference, the flow reversals became weaker and the velocity of forward flow direction became higher due to the increased flow momentums and decreased tidal differences. In the case of normal flow, the maximum reverse velocity was 0.4 m/s, which was equivalent to the maximum forward velocity. In addition, the pattern of the development and decay of forward and reverse flow was presented.

회전컵 무화기의 미립화 특성에 관한 실험적 연구 (An Experimental Study on the Atomization Characteristics of the Rotary Cup Atomizer)

  • 진승범;조대진;윤석주
    • 한국분무공학회지
    • /
    • 제6권4호
    • /
    • pp.14-21
    • /
    • 2001
  • Rotary atomizer is widely used in practical application ranging from combustion, cooling, spray drying, agriculture, chemical system. Rotary cup atomizer has some advantages such as extreme versatility and liquid atomization successfully varying widely in viscosity. In rotary atomization, the feed liquid is centrifugally accelerated to high velocity and the liquid extends over the rotating surface as a thin film before being discharged into an atmosphere. The degree of rotary atomization depends upon peripheral speed, feed rate, liquid properties and atomizer design. An important asset is that thickness and uniformity of the liquid sheet can readily be controlled by regulating the liquid flow rate and the rotational speed. LDPA(Laser Diffraction Particle Analyser) and image aquisition system are used to measure drop size distribution and spray pattern. The atomization characteristics of the rotary cup atomizer is investigated experimentally by varing the liquid feed rate, rotary cup speed and air velocity for atomization. As a results, the effect of air velocity on the atomization characteristics such as drop size and spray uniformity is considerably greater than variation of those with liquid feed rate.

  • PDF

Capacity of a transmission tower under downburst wind loading

  • Mara, T.G.;Hong, H.P.;Lee, C.S.;Ho, T.C.E.
    • Wind and Structures
    • /
    • 제22권1호
    • /
    • pp.65-87
    • /
    • 2016
  • The wind velocity profile over the height of a structure in high intensity wind (HIW) events, such as downbursts, differs from that associated with atmospheric boundary layer (ABL) winds. Current design codes for lattice transmission structures contain only limited advice on the treatment of HIW effects, and structural design is carried out using wind load profiles and response factors derived for ABL winds. The present study assesses the load-deformation curve (capacity curve) of a transmission tower under modeled downburst wind loading, and compares it with that obtained for an ABL wind loading profile. The analysis considers nonlinear inelastic response under simulated downburst wind fields. The capacity curve is represented using the relationship between the base shear and the maximum tip displacement. The results indicate that the capacity curve remains relatively consistent between different downburst scenarios and an ABL loading profile. The use of the capacity curve avoids the difficulty associated with defining a reference wind speed and corresponding wind profile that are adequate and applicable for downburst and ABL winds, thereby allowing a direct comparison of response under synoptic and downburst events. Uncertainty propagation analysis is carried out to evaluate the tower capacity by considering the uncertainty in material properties and geometric variables. The results indicated the coefficient of variation of the tower capacity is small compared to those associated with extreme wind speeds.

풍속 재현빈도와 일치하는 해일모의용 표준태풍 생성 (Generation of a Standard Typhoon using for Surge Simulation Consistent with Wind in Terms of Return Period)

  • 강주환;김양선;권순덕;전영선
    • 한국해안·해양공학회논문집
    • /
    • 제28권1호
    • /
    • pp.53-62
    • /
    • 2016
  • 서해안에 영향을 미친 태풍자료를 사용하여 몬테칼로 시뮬레이션을 통해 목포를 비롯하여 군산, 인천 및 제주 등 서해안 4곳의 빈도별 풍속을 산정하였다. 민감도분석 결과 최근접거리와 최대풍속반경의 차이가 풍속에 가장 영향을 크게 미치는 요소이고 위치각과 기압강하량 역시 민감한 반면 이동속도는 가장 둔감한 매개변수로 나타나고 있다. 이를 토대로 빈도별 최대풍속을 발생시키는 평균적인 해당빈도의 표준태풍을 설정할 수 있으며, 각 지점에서의 태풍 매개변수 설정을 통해 표준태풍을 확립할 수 있다. 이러한 표준태풍을 통해 빈도별 풍속과 일맥상통하는 빈도별 해일고 역시 산정할 수 있게 된다. 또한 가항반원에 해당하는 자료만 포함시켜 해석함으로써 음해일을 유발하는 표준태풍 역시 생성할 수 있다.

극한 진동에 의한 철근콘크리트 뼈대구조물에 균열전파의 파괴 역학적 특성 연구 (Fracture Analysis on Crack Propagation of RC Frame Structures due to Extreme Loadings)

  • 정제평;이명곤;김우
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권4호
    • /
    • pp.191-199
    • /
    • 2003
  • 대부분 강구조 및 철근콘크리트 구조물은 탄소성 거동에 의해 극한강도가 지배된다. 비록 평상시에는 탄성 범위를 초과하는 진폭(振幅)이 발생하지 않지만 심각한 폭발이나 지진하중과 같은 극단적인 경우가 발생할 때, 엔지니어는 구조물에 영구적인 손상을 줄 수 있는 상황들을 접하게 된다. 이러한 상태 평가를 위해 본 연구는 폭발 등의 극한하중에 특성에 의해 발생되는 구조물의 동적거동을 분석하였다. 그리고 본 연구는 극한진동 특성을 분석하기 위해 비선형 유한요소프로그램(ATENA2D, FRANC2DL)을 사용하였다. 본 연구의 해석결과, 평상시와 횡하중시의 균열은 발생 위치와 양태가 매우 다르게 나타났다. 또한, 초기 손상균열이 있는 RC라멘의 보에 단면형상과 기하학적 형상비 변화를 고려하여 균열각의 변화를 분석하였으며 이를 통해 동적 횡하중 작용에 의한 피해여부를 판단할 수 있었다.

남서 해역 심해 설계 파고 및 풍속의 극치분석 (The Extreme Value Analysis of Deepwater Design Wave Height and Wind Velocity off the Southwest Coast)

  • 김강민;이중우;이훈;양상용;정영환
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2005년도 춘계학술대회 논문집
    • /
    • pp.245-251
    • /
    • 2005
  • 연안 및 항만시설물의 설계에서 심해 설계파 및 풍속은 매우 중요한 설계 파라메타이다. 특히, 최근 부각되고 있는 방재공학 측면에서 이러한 정보에 대한 분석단계는 필수적이라 할 수 있다. 본 연구에서는 완도관측소의 기상연보에서 제시한 1978년부터 2003년까지의 풍속자료와 한국해양연구원 파랑정보시스템에서 제공하는 16방향별 최대 유의파 산출자료를 이용하여 극치분석을 수행하였다. 특성분석에 사용된 극치분포함수는 Weibull, Gumbel, Log-Pearson Type-III, Normal, Lognormal, Gamma 분포이며, 각 분포함수의 매개변수는 모멘트법, 최우도법 그리고 확률 가중 모멘트법으로 추정하였다. 또한, 극치분포함수의 적함성은 5${\%}$의 유의수준 즉, 95${\%}$신뢰도 수준으로 $x^{2}$및 K-S 검정을 실시하였다. 그 결과, 한국 남서연안의 심해 설계파고는 Gumbel 분포형이 가장 적합한 모형으로 파악되었으나, 본 연구의 대상영역에 적합한 모형은 각각의 극치자료에 따라 선정된 확률분포에 의해 다르게 나타났다.

  • PDF

Wind flow around rectangular obstacles with aspect ratio

  • Lim, Hee-Chang
    • Wind and Structures
    • /
    • 제12권4호
    • /
    • pp.299-312
    • /
    • 2009
  • It has long been studied about the flow around bluff bodies, but the effect of aspect ratio on the sharp-edged bodies in thick turbulent boundary layers is still argued. The author investigates the flow characteristics around a series of rectangular bodies ($40^d{\times}80^w{\times}80^h$, $80^d{\times}80^w{\times}80^h$ and $160^d{\times}80^w{\times}80^h$ in mm) placed in a deep turbulent boundary layer. The study is aiming to identify the extant Reynolds number independence of the rectangular bodies and furthermore understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge, when the shape of bodies is changed, responsible for producing extreme suction pressures around the bluff bodies. The experiments are carried out at three different Reynolds numbers, based on the velocity U at the body height h, of 24,000, 46,000 and 67,000, and large enough that the mean boundary layer flow is effectively Reynolds number independent. The experiment includes wind tunnel work with the velocity and surface pressure measurements. The results show that the generation of the deep turbulent boundary layer in the wind tunnel and the surface pressure around the bodies were all independent of Reynolds number and the longitudinal length, but highly dependent of the transverse width.

New methodology to prevent blasting damages for shallow tunnel

  • Ozacar, Vehbi
    • Geomechanics and Engineering
    • /
    • 제15권6호
    • /
    • pp.1227-1236
    • /
    • 2018
  • From all of the environmental problems, blast-induced vibrations often cause concern to surrounding residents. It is often claimed that damage to building superstructures is due to blasting, and sometimes the building owner files a lawsuit against the company that perform blasting operations. The blast-vibration problem has been thoroughly investigated in the past and continues to be the subject of ongoing research. In this study, a tunnel construction has been performed by a construction company, according to their contract they must have used drilling & blasting method for excavation in tunnel inlet and outlet portal. The population is very condensed with almost tunnel below in the vicinity houses of one or two floors, typically built with stone masonry and concrete. This situation forces the company to take extreme precautions when they are designing blasts so that the blast effects, which are mainly vibration and aerial waves, do not disturb their surrounding neighbors. For this purpose, the vibration measurement and analysis have been carried out and a new methodology in minimizing the blast induced ground vibrations at the target location, was also applied. Peak particle velocity and dominant frequencies were taken into consideration in analyzing the blast-induced ground vibration. The methodology aims to employ the most suitable time delays among blast-hole groupings to render destructive interference of surface waves at the target location.