DOI QR코드

DOI QR Code

풍속 재현빈도와 일치하는 해일모의용 표준태풍 생성

Generation of a Standard Typhoon using for Surge Simulation Consistent with Wind in Terms of Return Period

  • 투고 : 2015.10.27
  • 심사 : 2016.02.14
  • 발행 : 2016.02.29

초록

서해안에 영향을 미친 태풍자료를 사용하여 몬테칼로 시뮬레이션을 통해 목포를 비롯하여 군산, 인천 및 제주 등 서해안 4곳의 빈도별 풍속을 산정하였다. 민감도분석 결과 최근접거리와 최대풍속반경의 차이가 풍속에 가장 영향을 크게 미치는 요소이고 위치각과 기압강하량 역시 민감한 반면 이동속도는 가장 둔감한 매개변수로 나타나고 있다. 이를 토대로 빈도별 최대풍속을 발생시키는 평균적인 해당빈도의 표준태풍을 설정할 수 있으며, 각 지점에서의 태풍 매개변수 설정을 통해 표준태풍을 확립할 수 있다. 이러한 표준태풍을 통해 빈도별 풍속과 일맥상통하는 빈도별 해일고 역시 산정할 수 있게 된다. 또한 가항반원에 해당하는 자료만 포함시켜 해석함으로써 음해일을 유발하는 표준태풍 역시 생성할 수 있다.

Extreme wind speeds at four sites including Mokpo, Gunsan, Incheon and Jeju near the Western Coast have been estimated with a tool of Monte Carlo simulation and typhoon data. Results of sensitivity analysis show that closeness between distance to the eye and the radius to maximum wind is most sensitive. While location angle and pressure deficit are sensitive too, but translation velocity is not. A standard typhoon, which results in extreme wind speeds having various return period, can be constructed by combination of parameter informations of each site. Then, with a numerical modelling of the typhoon, extreme surge heights having the same return period can also be obtained. To be added, by analysing the data which only including those based on navigable semicircle, it is possible to produce a standard typhoon which could result in setting-down of sea level.

키워드

참고문헌

  1. Batts, M.E., Russell, L.R. and Simiu, E. (1980). Hurricane wind speeds in the U.S., Journal of Structural Engineering, ASCE, 106(10).
  2. Cho, K.H. and Kim, S.C. (2009). A study on optimal radius of typhoon selection for Monte Carlos method, Proceedings of the Wind Engineering Institute of Korea, Seoul National Univ., 39-43.
  3. Divoky, D. and Resio, D.T. (2007). Performance of the JPM and EST methods in storm surge studies. 10th International Workshop on Wave Hindcasting and Forecasting, and Coastal Hazard Symposium, North Shore, Oahu, Hawaii.
  4. Goring, D.G., Stephens, S.A., Bell, R.G. and Pearson, C.P. (2011). Estimation of extreme sea levels in a tide-dominated environment using short data records. Journal of Waterway, Port, Coastal, and Ocean Engineering, 137(3), 150-159. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000071
  5. Holland, G.K. (1980). An analytic model of the wind and pressure profiles in hurricanes, Monthly Weather Review, 108.
  6. Kang, J.W. (2015). Typhoon-surge characteristics in relation with the tide-surge interaction, Journal of Korean Society of Coastal and Ocean Eng., 27(1), 25-37. (in Korean) https://doi.org/10.9765/KSCOE.2015.27.1.25
  7. Kang, J.W., Kim, Y.S., Cho, H.Y. and Shim, J.-S. (2012). Estimation of extreme sea levels at tide-dominated coastal zone, Journal of Korean Society of Coastal and Ocean Eng., 24(6), 185-193. (in Korean)
  8. Kang, S.-W., Jun, K.-C., Bang, G.-H. and Park, K.-S. (2002). Empirical relationship between central pressure and maximum sustained wind for tropical cyclones in Northeast Asian Sea, Asia-Pacific Journal of Atmospheric Science, 38(5), 523-530.
  9. Kim, D.-W., and Ha, Y.-C. (2004). Estimation of wind speeds for return period in the major cities reflecting the recent meteorological data, Journal of the Wind Engineering Institute of Korea, 8(2), 147-154.
  10. Kim, S.-C., Kim, Y.S. and Yang, Y.-T. (2005). Assessment of severe local storm risks in Ulsan area using Monte Carlos typhoon simulation method and CFD model, Journal of the Wind Engineering Institute of Korea, 9(1), 45-54.
  11. Ko, D.H., Jeong, S.T., Cho, H. and Kang, K.S. (2014). Extreme offshore wind estimation using typhoon simulation, Journal of Korean Society of Coastal and Ocean Eng., 26(1), 16-24. (in Korean) https://doi.org/10.9765/KSCOE.2014.26.1.16
  12. Kwon, S.-D. and Lee, J.-H. (2008). Estimation of extreme wind speeds in Southern and Western Coasts by typhoon simulation, Journal of Korean Society of Civil Eng., 28(4A), 431-438. (in Korean)
  13. Lee, Y.K., Lee, S.S. and Kim, H.S. (2007). Expectation of extreme wind speed due to typhoon, Proceedings of the Wind Engineering Institute of Korea, Pukyoung National Univ., 1-7.
  14. Powell, M., Soukup, G., Cocke, S., Gulati, S., Morisseau-L., N., Hamid, S., Dorst, N. and Axe, L. (2005). State of Florida hurricane loss projection model: Atmospheric science component, Journal of Wind Eng., 93, 651-674.
  15. Russell, L.R. (1971). Probability distributions for hurricane effects, Journal of Waterways, Harbors and Coastal Engineering, ASCE, 97(1).
  16. Scheffner, N.W., Clausner, J.E., Militello, A., Borgman, L.E., Edge, B.L. and Grace, P.J. (1999). Use and application of the empirical simulation technique; User's guide. US Army Corps of Engineers.
  17. Toro, G.R., Resio, D.T., Divoky, D., Niedoroda, A.W. and Reed, C. (2010). Efficient joint-probability methods for hurricane surge frequency analysis. Ocean Engineering, 37, 125-134. https://doi.org/10.1016/j.oceaneng.2009.09.004
  18. Vickery P.J., and Twisdale, L.A. (1995). Wind field and filling models for hurricane wind-speed predictions, Journal of Structural Engineering, ASCE, 121(11).
  19. Vickery P.J., Skerlj, P.F. and Twisdale, L.A. (2000). Simulation of hurricane risk in the U.S. using empirical track model, Journal of Structural Engineering, 67, 152-163.
  20. Willoughby, H.E., Darling, R.W.R. and Rahn, M.E. (2006). Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles, Monthly Weather Review, 134, 1102-1120. https://doi.org/10.1175/MWR3106.1

피인용 문헌

  1. Frequency Analysis on Surge Height by Numerical Simulation of a Standard Typhoon vol.28, pp.5, 2016, https://doi.org/10.9765/KSCOE.2016.28.5.284