• Title/Summary/Keyword: extreme value statistics

Search Result 108, Processing Time 0.027 seconds

Estimation for the Change of Daily Maxima Temperature (일일 최고기온의 변화에 대한 추정)

  • Ko, Wang-Kyung
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • This investigation on the change of the daily maxima temperature in Seoul, Daegu, Chunchen, Youngchen was triggered by news items such as the earth is getting warmer and a recent news item that said that Korea is getting warmer due to this climatic change. A statistical analysis on the daily maxima for June over this period in Seoul revealed a positive trend of 1.1190 centigrade over the 45 years, a change of 0.0249 degrees annually. Due to the large variation on these maximum temperatures, one can raise the question on the significance of this increase. To check the goodness of fit of the proposed extreme value model, we shown a Q-Q plot of the observed quantiles against the simulated quantiles and a probability plot. And we calculated statistics each month and a tolerance limit. This is tested through simulating a large number of similar datasets from an Extreme Value distribution which described the observed data very well. Only 0.02% of the simulated datasets showed an increase of this degrees or larger, meaning that the probability is very low for such an event to occur.

Highway bridge live loading assessment and load carrying capacity estimation using a health monitoring system

  • Moyo, Pilate;Brownjohn, James Mark William;Omenzetter, Piotr
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.609-626
    • /
    • 2004
  • The Land Transport Authority of Singapore has a continuing program of highway bridge upgrading, to refurbish and strengthen bridges to allow for increasing vehicle traffic and increasing axle loads. One subject of this program has been a short span bridge taking a busy highway across a coastal inlet near a major port facility. Experiment-based structural assessments of the bridge were conducted before and after upgrading works including strengthening. Each assessment exercise comprised two separate components; a strain and acceleration monitoring exercise lasting approximately one month, and a full-scale dynamic test carried out in a single day. This paper reports the application of extreme value statistics to estimate bridge live loads using strain measurements.

Goodness-of-fit tests for the inverse Weibull or extreme value distribution based on multiply type-II censored samples

  • Kang, Suk-Bok;Han, Jun-Tae;Seo, Yeon-Ju;Jeong, Jina
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.4
    • /
    • pp.903-914
    • /
    • 2014
  • The inverse Weibull distribution has been proposed as a model in the analysis of life testing data. Also, inverse Weibull distribution has been recently derived as a suitable model to describe degradation phenomena of mechanical components such as the dynamic components (pistons, crankshaft, etc.) of diesel engines. In this paper, we derive the approximate maximum likelihood estimators of the scale parameter and the shape parameter in the inverse Weibull distribution under multiply type-II censoring. We also develop four modified empirical distribution function (EDF) type tests for the inverse Weibull or extreme value distribution based on multiply type-II censored samples. We also propose modified normalized sample Lorenz curve plot and new test statistic.

Asymptotic Properties of Upper Spacings

  • Yun, Seok-Hoon
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.3
    • /
    • pp.289-297
    • /
    • 1997
  • It is well known that the spacings, the differences of two successive order statistics, in a random sample of size n from a distribution function F are independent and exponentially distributed if F is itself the exponential distribution. In this paper we obtain an asymptotically similar result on a fixed number of upper spacings as n .to. .infty. for a general F under the assumption that F is in the domain of attraction of some extreme value distribution. For a heavy or short tailed F, appropriate log transformations of the sample should be proceded to get the result. As a by-product, we also get that each upper spacing diverges in probability to .infty. and converges in probability to 0 as n .to. .infty. for a heavy and short tailed F, respectively, which is fully expected.

  • PDF

Statistical Modeling for Forecasting Maximum Electricity Demand in Korea (한국 최대 전력량 예측을 위한 통계모형)

  • Yoon, Sang-Hoo;Lee, Young-Saeng;Park, Jeong-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.1
    • /
    • pp.127-135
    • /
    • 2009
  • It is necessary to forecast the amount of the maximum electricity demand for stabilizing the flow of electricity. The time series data was collected from the Korea Energy Research between January 2000 and December 2006. The data showed that they had a strong linear trend and seasonal change. Winters seasonal model, ARMA model were used to examine it. Root mean squared prediction error and mean absolute percentage prediction error were a criteria to select the best model. In addition, a nonstationary generalized extreme value distribution with explanatory variables was fitted to forecast the maximum electricity.

A Study of Outlier Detection Using the Mixture of Extreme Distributions Based on Deep-Sea Fishery Data (원양어선 조업 데이터의 혼합 극단분포를 이용한 이상점 탐색 연구)

  • Lee, Jung Jin;Kim, Jae Kyoung
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.847-858
    • /
    • 2015
  • Deep-sea fishery in the Antarctic Ocean has been actively progressed by the developed countries including Korea. In order to prevent the environmental destruction of the Antarctic Ocean, related countries have established the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) and have monitored any illegal unreported or unregulated fishing. Fishing of tooth fish, an expensive fish, in the Antarctic Ocean has increased recently and high catches per unit effort (CPUE) of fishing boats, which is suspicious for an illegal activity, have been frequently reported. The data of CPUEs in a fishing area of the Antarctic Ocean often show an extreme Distribution or a mixture of two extreme distributions. This paper proposes an algorithm to detect an outlier of CPUEs by using the mixture of two extreme distributions. The parameters of the mixture distribution are estimated by the EM algorithm. Log likelihood value and posterior probabilities are used to detect an outlier. Experiments show that the proposed algorithm to detect outlier of the data can be adopted instead of simple criteria such as a CPUE is greater than 1.

Parametric nonparametric methods for estimating extreme value distribution (극단값 분포 추정을 위한 모수적 비모수적 방법)

  • Woo, Seunghyun;Kang, Kee-Hoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.531-536
    • /
    • 2022
  • This paper compared the performance of the parametric method and the nonparametric method when estimating the distribution for the tail of the distribution with heavy tails. For the parametric method, the generalized extreme value distribution and the generalized Pareto distribution were used, and for the nonparametric method, the kernel density estimation method was applied. For comparison of the two approaches, the results of function estimation by applying the block maximum value model and the threshold excess model using daily fine dust public data for each observatory in Seoul from 2014 to 2018 are shown together. In addition, the area where high concentrations of fine dust will occur was predicted through the return level.

A Bayesian Extreme Value Analysis of KOSPI Data (코스피 지수 자료의 베이지안 극단값 분석)

  • Yun, Seok-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.833-845
    • /
    • 2011
  • This paper conducts a statistical analysis of extreme values for both daily log-returns and daily negative log-returns, which are computed using a collection of KOSPI data from January 3, 1998 to August 31, 2011. The Poisson-GPD model is used as a statistical analysis model for extreme values and the maximum likelihood method is applied for the estimation of parameters and extreme quantiles. To the Poisson-GPD model is also added the Bayesian method that assumes the usual noninformative prior distribution for the parameters, where the Markov chain Monte Carlo method is applied for the estimation of parameters and extreme quantiles. According to this analysis, both the maximum likelihood method and the Bayesian method form the same conclusion that the distribution of the log-returns has a shorter right tail than the normal distribution, but that the distribution of the negative log-returns has a heavier right tail than the normal distribution. An advantage of using the Bayesian method in extreme value analysis is that there is nothing to worry about the classical asymptotic properties of the maximum likelihood estimators even when the regularity conditions are not satisfied, and that in prediction it is effective to reflect the uncertainties from both the parameters and a future observation.

Extreme Quantile Estimation of Losses in KRW/USD Exchange Rate (원/달러 환율 투자 손실률에 대한 극단분위수 추정)

  • Yun, Seok-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.5
    • /
    • pp.803-812
    • /
    • 2009
  • The application of extreme value theory to financial data is a fairly recent innovation. The classical annual maximum method is to fit the generalized extreme value distribution to the annual maxima of a data series. An alterative modern method, the so-called threshold method, is to fit the generalized Pareto distribution to the excesses over a high threshold from the data series. A more substantial variant is to take the point-process viewpoint of high-level exceedances. That is, the exceedance times and excess values of a high threshold are viewed as a two-dimensional point process whose limiting form is a non-homogeneous Poisson process. In this paper, we apply the two-dimensional non-homogeneous Poisson process model to daily losses, daily negative log-returns, in the data series of KBW/USD exchange rate, collected from January 4th, 1982 until December 31 st, 2008. The main question is how to estimate extreme quantiles of losses such as the 10-year or 50-year return level.

Analysis of Extreme Values of Daily Percentage Increases and Decreases in Crude Oil Spot Prices (국제현물원유가의 일일 상승 및 하락율의 극단값 분석)

  • Yun, Seok-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.5
    • /
    • pp.835-844
    • /
    • 2010
  • Tools for statistical analysis of extreme values include the classical annual maximum method, the modern threshold method and variants improving the second one. While the annual maximum method is to t th generalized extreme value distribution to the annual maxima of a time series, the threshold method is to the generalized Pareto distribution to the excesses over a high threshold from the series. In this paper we deal with the Poisson-GPD method, a variant of the threshold method with a further assumption that the total number of exceedances follows the Poisson distribution, and apply it to the daily percentage increases and decreases computed from the spot prices of West Texas Intermediate, which were collected from January 4th, 1988 until December 31st, 2009. According to this analysis, the distribution of daily percentage increases as well as decreases turns out to have a heavy tail, unlike the normal distribution, which coincides well with the general phenomenon appearing in the analysis of lots of nowaday nancial data.