• Title/Summary/Keyword: extreme loads

Search Result 209, Processing Time 0.027 seconds

Numerical simulation of ice loads on a ship in broken ice fields using an elastic ice model

  • Wang, Chao;Hu, Xiaohan;Tian, Taiping;Guo, Chunyu;Wang, Chunhui
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.414-427
    • /
    • 2020
  • The finite element method is used to simulate the navigation of an ice-area bulk carrier in broken ice fields. The ice material is defined as elastic, and the simulations are accomplished at four model speeds and three ice concentrations. The movements of ice floes in the simulation are consistent with those in the model test, and the percentage deviation of the numerical ice resistance from the ice resistance in the model test can be controlled to be less than 15 %. The key characteristics of ice loads, including the average ice loads, extreme ice loads, and characteristic frequency, are analyzed thoroughly in a comprehensive manner. Moreover, the effects of sailing speed and ice concentration on the ice loads are analyzed. In particular, the stress distribution of ice floes is presented to help understand how model speed and concentration affect the ice loads. The "ice pressure" phenomenon is observed at 90 % ice concentration, and it is realistically reflected both in the time―and frequency―domain ice force curves.

Errors in GEV analysis of wind epoch maxima from Weibull parents

  • Harris, R.I.
    • Wind and Structures
    • /
    • v.9 no.3
    • /
    • pp.179-191
    • /
    • 2006
  • Parent wind data are often acknowledged to fit a Weibull probability distribution, implying that wind epoch maxima should fall into the domain of attraction of the Gumbel (Type I) extreme value distribution. However, observations of wind epoch maxima are not fitted well by this distribution and a Generalised Extreme Value (GEV) analysis leading to a Type III fit empirically appears to be better. Thus there is an apparent paradox. The reasons why advocates of the GEV approach seem to prefer it are briefly summarised. This paper gives a detailed analysis of the errors involved when the GEV is fitted to epoch maxima of Weibull origin. It is shown that the results in terms of the shape parameter are an artefact of these errors. The errors are unavoidable with the present sample sizes. If proper significance tests are applied, then the null hypothesis of a Type I fit, as predicted by theory, will almost always be retained. The GEV leads to an unacceptable ambiguity in defining design loads. For these reasons, it is concluded that the GEV approach does not seem to be a sensible option.

Reliability analysis of tunnels with consideration of the earthquakes extreme events

  • Azadi, Mohammad;Ghasemi, S. Hooman;Mohammadi, Mohammadreza
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.433-439
    • /
    • 2020
  • Tunnels are one of the most important constructions in civil engineering. The damage to these structures caused enormous costs. Therefore, the safe and economic design of these structures has long been considered. However, both applied loads on the tunnels as well as the resistance of the structural members are naturally uncertain parameters, hence, the design of these structures requires considering the probabilistic approaches. This study aims to determine the load and resistant factors of lining tunnels concerning the earthquake extreme events limit state function. For this purpose, tunnels that have been designed according to the previous design codes (AASHTO Tunnel LRFD 2017) and using reliability analysis, the optimum reliability of these structures for different loading scenarios is determined. In this paper, the tunnel is considered circular. Finally, the proper load and resistance factors are calculated corresponding to the obtained target reliability. Based on the performed calibration earthquake extreme events limit state function, the result of this study can be recommended to AASHTO Tunnel LRFD 2017.

Probabilistic analysis of Italian extreme winds : Reference velocity and return criterion

  • Ballio, G.;Lagomarsino, S.;Piccardo, G.;Solari, G.
    • Wind and Structures
    • /
    • v.2 no.1
    • /
    • pp.51-68
    • /
    • 1999
  • Applying and extending some preceding researches, this paper proposes a map of Italian extreme winds assigning the reference velocity, i.e., the wind velocity averaged over 10 minutes, at 10 m height, in a flat open terrain, with 50 years mean return period, depending on the site and the altitude. Furthermore, an objective criterion is formulated by which the actual values of the local wind velocity are given as a function of the reference velocity. The study has been carried out in view of the revision of the Italian Standards dealing with safety and loads and the introduction of the aeolic Italian map into Eurocode 1.

Probabilistic Analysis of Lifetime Extreme Live toads of Multi-Story Columns (고층기둥 축하중의 사용기간 최대값 분석)

  • 김상효;조형근;배규웅;박홍석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.69-72
    • /
    • 1990
  • The live loads acting on structures are generally computed in terms of equivalent uniformly distributed loads for the simplicity in design process. The loads, therefore, tend to decrease with increasing influence area in both load intensity and variance. Since multi-story column loads result from accumulation of loadings acting on several different floors, its influence area becomes wider and lifetime maximum decreases. In the design codes proposing the design loads for types of structural members (i.e., slabs, beams, columns), not for tile change of influence area, some proper reduction factors are given for columns which support more than one floor. Using the live load models developed for colons supporting single floor, in this study, the probabilistic characteristics of multi-story column loads are analyzed. In addition reduction factors given for multi-story columns in current practice are calibrated.

  • PDF

Review of Resilience-Based Design

  • Ademovic, Naida;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.91-110
    • /
    • 2020
  • The reliability of structures is affected by various impacts that generally have a negative effect, from extreme weather conditions, due to climate change to natural or man-made hazards. In recent years, extreme loading has had an enormous impact on the resilience of structures as one of the most important characteristics of the sound design of structures, besides the structural integrity and robustness. Resilience can be defined as the ability of the structure to absorb or avoid damage without suffering complete failure, and it can be chosen as the main objective of design, maintenance and restoration for structures and infrastructure. The latter needs further clarification (which is done in this paper), to achieve the clarity of goals compared to robustness which is defined in Eurocode EN 1991-1-7 as: "the ability of a structure to withstand events like fire, explosions, impact or the consequences of human error, without being damaged to an extent disproportionate to the original cause". Many existing structures are more vulnerable to the natural or man-made hazards due to their material deterioration, and a further decrease of its loadbearing capacity, modifying the structural performance and functionality and, subsequently, the system resilience. Due to currently frequent extreme events, the design philosophy is shifting from Performance-Based Design to Resilience-Based Design and from unit to system (community) resilience. The paper provides an overview of such design evolution with indicative needs for Resilience-Based Design giving few conducted examples.

Standardization Trend and Propulsion Strategy of Wind Power Generation (풍력발전 표준화 동향 및 추진전략)

  • Kim, Mann-eung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.475-475
    • /
    • 2009
  • Recent alarming acceleration of global warming has made power generations using renewable energy to be in the middle of the spotlight. Korean government has also announced that it will make the related industry to be nation's one of main export items with high investments to low carbon green growth industry. To achieve this goal of exporting the renewable energy power generation system beyond domestic use, internationally acceptable rules should be applied and the three step processes of design, performance assessment and certification should follow international standards. Corresponding this international requests, IEC(International Electrotechnical Commission) is conducting the establishment of rules in TC88 for technical requirements of wind turbines. Design life-time of a wind turbine is required to be at least 20 years. In the meantime, the wind turbine will experience a lot of load cases such as extreme loads and fatigue loads which will include several typhoons per year and extreme gusts with 50 years recurrence period as well as endless turbulence flow. Therefore, IEC 61400-1 specifies design load cases to be considered in the wind turbine design and requires the wind turbine to withstand the load cases in various operational situations. It thus appears that the examination of contents and decisions discussed in the international standard committee will help people in the field of offshore wind energy and ocean energy converters.

  • PDF

Development of Current Harmonics Estimation Method by Considering the Characteristics of Input Voltage (인가전압의 특성을 고려한 주거용 부하의 전류성분 추정기법 개발)

  • Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.181-185
    • /
    • 2011
  • Due to the increasing of nonlinear loads such as converters and inverters connected to the electric power distribution system, and extensive application of harmonic generation sources with power electronic devices, disturbance of the electric power system and its influences on industries have been continuously increasing. Thus, it is difficult to construct accurate load model for active and reactive power in environments with harmonics. In this research, we develop current harmonics estimation method based on Extreme Learning Machine (ELM) with fast learning procedure for residential loads. Using data sets acquired from various residential loads, the proposed method has been intensively tested. As the experimental results, we confirm that the proposed method makes it possible to effective estimate current harmonics for various input voltage.

Comparison of Mode Superposition Method and Mode Acceleration Method in Dynamic Analysis of Suspension Bridges under Wind Loads (풍하중을 받는 현수교의 진동 해석에 있어서 모우드 중첩법과 모우드 가속도법의 비교)

  • 김태남
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.223-230
    • /
    • 1997
  • A method of stochastic dynamic analysis of suspension bridge subjected to random wind loads has been developed in this paper. Example analyses are carried out by mode superposition method(MSM), mode acceleration method(MAM) and advanced mode acceleration method(AMAM) in frequency domain for the Nam-Hae Bridge. In this study the statistical characterics of random wind loads we assumed to be Gaussian stationary zero mean processes. The considered structural response quanties are displacements, shear forces and bending moments. The mean extreme responses are approximately calculated by three times of standard deviations. The followings are the conclusions from this study. 1. Numerical results which obtained by three methods of computer program developed in this paper agree reasonably well when the numbers of modes increase. 2. AMAM is simple, accurate, economic and reliable method compared with the MSM and the MAM.

  • PDF

Probabilistic Analysis of Wind Loads (국내 풍하중의 확률적 특성 분석)

  • 김상효;배규웅;박홍석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.04a
    • /
    • pp.31-36
    • /
    • 1990
  • The probabilistic characteristics of wind loads have been analyzed using statistical data on wind speeds, pressure coefficient, exposure coefficient, and gust factor. The wind speed data collected in 25 nationwide weather stations have been modified to be consistent in measuring height, exposure condition as well as averaging time, Having performed Monte Carlo simulation for various heights and site conditions, the statistical models of wind loads were determined, in which Type-I extreme value distribution has been applied. The models also incorporate a reduction factor of 0.85 to account for the reduced probability that the maximum wind speed will occur in a direction most unfavorable to the response of structure.

  • PDF