• 제목/요약/키워드: extreme learning machine

검색결과 140건 처리시간 0.031초

Optimal deep machine learning framework for vibration mitigation of seismically-excited uncertain building structures

  • Afshin Bahrami Rad;Javad Katebi;Saman Yaghmaei-Sabegh
    • Structural Engineering and Mechanics
    • /
    • 제88권6호
    • /
    • pp.535-549
    • /
    • 2023
  • Deep extreme learning machine (DELM) and multi-verse optimization algorithms (MVO) are hybridized for designing an optimal and adaptive control framework for uncertain buildings. In this approach, first, a robust model predictive control (RMPC) scheme is developed to handle the problem uncertainty. The optimality and adaptivity of the proposed controller are provided by the optimal determination of the tunning weights of the linear programming (LP) cost function for clustered external loads using the MVO. The final control policy is achieved by collecting the clustered data and training them by DELM. The efficiency of the introduced control scheme is demonstrated by the numerical simulation of a ten-story benchmark building subjected to earthquake excitations. The results represent the capability of the proposed framework compared to robust MPC (RMPC), conventional MPC (CMPC), and conventional DELM algorithms in structural motion control.

A robust approach in prediction of RCFST columns using machine learning algorithm

  • Van-Thanh Pham;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • 제46권2호
    • /
    • pp.153-173
    • /
    • 2023
  • Rectangular concrete-filled steel tubular (RCFST) column, a type of concrete-filled steel tubular (CFST), is widely used in compression members of structures because of its advantages. This paper proposes a robust machine learning-based framework for predicting the ultimate compressive strength of RCFST columns under both concentric and eccentric loading. The gradient boosting neural network (GBNN), an efficient and up-to-date ML algorithm, is utilized for developing a predictive model in the proposed framework. A total of 890 experimental data of RCFST columns, which is categorized into two datasets of concentric and eccentric compression, is carefully collected to serve as training and testing purposes. The accuracy of the proposed model is demonstrated by comparing its performance with seven state-of-the-art machine learning methods including decision tree (DT), random forest (RF), support vector machines (SVM), deep learning (DL), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and categorical gradient boosting (CatBoost). Four available design codes, including the European (EC4), American concrete institute (ACI), American institute of steel construction (AISC), and Australian/New Zealand (AS/NZS) are refereed in another comparison. The results demonstrate that the proposed GBNN method is a robust and powerful approach to obtain the ultimate strength of RCFST columns.

머신러닝을 이용한 다공형 GDI 인젝터의 플래시 보일링 분무 예측 모델 개발 (Development of Flash Boiling Spray Prediction Model of Multi-hole GDI Injector Using Machine Learning)

  • 상몽소;신달호;;박수한
    • 한국분무공학회지
    • /
    • 제27권2호
    • /
    • pp.57-65
    • /
    • 2022
  • The purpose of this study is to use machine learning to build a model capable of predicting the flash boiling spray characteristics. In this study, the flash boiling spray was visualized using Shadowgraph visualization technology, and then the spray image was processed with MATLAB to obtain quantitative data of spray characteristics. The experimental conditions were used as input, and the spray characteristics were used as output to train the machine learning model. For the machine learning model, the XGB (extreme gradient boosting) algorithm was used. Finally, the performance of machine learning model was evaluated using R2 and RMSE (root mean square error). In order to have enough data to train the machine learning model, this study used 12 injectors with different design parameters, and set various fuel temperatures and ambient pressures, resulting in about 12,000 data. By comparing the performance of the model with different amounts of training data, it was found that the number of training data must reach at least 7,000 before the model can show optimal performance. The model showed different prediction performances for different spray characteristics. Compared with the upstream spray angle and the downstream spray angle, the model had the best prediction performance for the spray tip penetration. In addition, the prediction performance of the model showed a relatively poor trend in the initial stage of injection and the final stage of injection. The model performance is expired to be further enhanced by optimizing the hyper-parameters input into the model.

쾌삭 303계 스테인리스강 소형 압연 선재 제조 공정의 생산품질 예측 모형 (Quality Prediction Model for Manufacturing Process of Free-Machining 303-series Stainless Steel Small Rolling Wire Rods)

  • 서석준;김흥섭
    • 산업경영시스템학회지
    • /
    • 제44권4호
    • /
    • pp.12-22
    • /
    • 2021
  • This article suggests the machine learning model, i.e., classifier, for predicting the production quality of free-machining 303-series stainless steel(STS303) small rolling wire rods according to the operating condition of the manufacturing process. For the development of the classifier, manufacturing data for 37 operating variables were collected from the manufacturing execution system(MES) of Company S, and the 12 types of derived variables were generated based on literature review and interviews with field experts. This research was performed with data preprocessing, exploratory data analysis, feature selection, machine learning modeling, and the evaluation of alternative models. In the preprocessing stage, missing values and outliers are removed, and oversampling using SMOTE(Synthetic oversampling technique) to resolve data imbalance. Features are selected by variable importance of LASSO(Least absolute shrinkage and selection operator) regression, extreme gradient boosting(XGBoost), and random forest models. Finally, logistic regression, support vector machine(SVM), random forest, and XGBoost are developed as a classifier to predict the adequate or defective products with new operating conditions. The optimal hyper-parameters for each model are investigated by the grid search and random search methods based on k-fold cross-validation. As a result of the experiment, XGBoost showed relatively high predictive performance compared to other models with an accuracy of 0.9929, specificity of 0.9372, F1-score of 0.9963, and logarithmic loss of 0.0209. The classifier developed in this study is expected to improve productivity by enabling effective management of the manufacturing process for the STS303 small rolling wire rods.

Multi-gene genetic programming for the prediction of the compressive strength of concrete mixtures

  • Ghahremani, Behzad;Rizzo, Piervincenzo
    • Computers and Concrete
    • /
    • 제30권3호
    • /
    • pp.225-236
    • /
    • 2022
  • In this article, Multi-Gene Genetic Programming (MGGP) is proposed for the estimation of the compressive strength of concrete. MGGP is known to be a powerful algorithm able to find a relationship between certain input space features and a desired output vector. With respect to most conventional machine learning algorithms, which are often used as "black boxes" that do not provide a mathematical formulation of the output-input relationship, MGGP is able to identify a closed-form formula for the input-output relationship. In the study presented in this article, MGPP was used to predict the compressive strength of plain concrete, concrete with fly ash, and concrete with furnace slag. A formula was extracted for each mixture and the performance and the accuracy of the predictions were compared to the results of Artificial Neural Network (ANN) and Extreme Learning Machine (ELM) algorithms, which are conventional and well-established machine learning techniques. The results of the study showed that MGGP can achieve a desirable performance, as the coefficients of determination for plain concrete, concrete with ash, and concrete with slag from the testing phase were equal to 0.928, 0.906, 0.890, respectively. In addition, it was found that MGGP outperforms ELM in all cases and its' accuracy is slightly less than ANN's accuracy. However, MGGP models are practical and easy-to-use since they extract closed-form formulas that may be implemented and used for the prediction of compressive strength.

Efficient Neural Network for Downscaling climate scenarios

  • Moradi, Masha;Lee, Taesam
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.157-157
    • /
    • 2018
  • A reliable and accurate downscaling model which can provide climate change information, obtained from global climate models (GCMs), at finer resolution has been always of great interest to researchers. In order to achieve this model, linear methods widely have been studied in the past decades. However, nonlinear methods also can be potentially beneficial to solve downscaling problem. Therefore, this study explored the applicability of some nonlinear machine learning techniques such as neural network (NN), extreme learning machine (ELM), and ELM autoencoder (ELM-AE) as well as a linear method, least absolute shrinkage and selection operator (LASSO), to build a reliable temperature downscaling model. ELM is an efficient learning algorithm for generalized single layer feed-forward neural networks (SLFNs). Its excellent training speed and good generalization capability make ELM an efficient solution for SLFNs compared to traditional time-consuming learning methods like back propagation (BP). However, due to its shallow architecture, ELM may not capture all of nonlinear relationships between input features. To address this issue, ELM-AE was tested in the current study for temperature downscaling.

  • PDF

기계학습기법을 이용한 땅밀림 위험등급 분류 (Classification of Soil Creep Hazard Class Using Machine Learning)

  • 이기하;레수안히엔;연민호;서준표;이창우
    • 한국방재안전학회논문집
    • /
    • 제14권3호
    • /
    • pp.17-27
    • /
    • 2021
  • 본 연구에서는 6개의 기계학습 기법들을 활용하여 2019년과 2020년 전국 땅밀림 현장조사 결과를 기반으로 땅밀림 위험지역을 A부터 C까지 3개 등급(A등급: 위험, B등급: 보통, C등급: 양호)으로 구분할 수 있는 분류모형을 구축하고, 분류 정확도를 비교·분석한다. 기계학습 기법으로는 K-Nearest Neighbor, Support Vector Machine, Logistic Regression, Decision Tree, Random Forest, Extreme Gradient Boosting 총 6개를 적용하였다. 분류 정확도 분석결과, 6개의 기법 모두 0.9 이상의 우수한 정확도를 보여주었다. 수치형 자료를 학습에 적용한 경우가, 문자형 자료를 학습한 모형보다 우수한 성능을 나타냈으며, 현장조사 평가점수 자료군(C1~C4) 보다는 전문가의견이 반영된 평가점수 자료군(R1~R4)으로 학습한 모형이 정확도가 높은 것으로 분석되었다. 특히, 직접징후와 간접징후 정보를 학습에 반영한 경우가 예측정확도가 높게 나타났다. 향후 땅밀림 현장조사 자료가 지속적으로 확보될 경우, 본 연구에서 활용한 기계학습기법은 땅밀림 분류를 위한 도구로 활용이 가능할 것으로 판단된다.

균형 표본 유전 알고리즘과 극한 기계학습에 기반한 바이오표지자 검출기와 파킨슨 병 진단 접근법 (Bio-marker Detector and Parkinson's disease diagnosis Approach based on Samples Balanced Genetic Algorithm and Extreme Learning Machine)

  • ;;최용수
    • 디지털콘텐츠학회 논문지
    • /
    • 제17권6호
    • /
    • pp.509-521
    • /
    • 2016
  • 본 논문에서는 파킨슨 병 진단 및 바이오 표지자 검출을 위한 극한 기계학습을 결합하는 새로운 균형 표본 유전 알고리즘(SBGA-ELM)을 제안하였다. 접근법은 정확한 파킨슨 병 진단 및 바이오 표지자 검출을 위해 공개 파킨슨 병 데이터베이스로부터 22,283개의 유전자의 발현 데이터를 사용하며 다음의 두 가지 주요 단계를 포함하였다 : 1. 특징(유전자) 선택과 2. 분류단계이다. 특징 선택 단계에서는 제안된 균형 표본 유전 알고리즘에 기반하고 파킨스병 데이터베이스(ParkDB)의 유전자 발현 데이터를 위해 고안되었다. 제안된 제안 된 SBGA는 추가적 분석을 위해 ParkDB에서 활용 가능한 22,283개의 유전자 중에서 강인한 서브셋을 찾는다. 특징분류 단계에서는 정확한 파킨슨 병 진단을 위해 선택된 유전자 세트가 극한 기계학습의 훈련에 사용된다. 발견 된 강인한 유전자 서브세트는 안정된 일반화 성능으로 파킨슨 병 진단을 할 수 있는 ELM 분류기를 생성하게 된다. 제안된 연구에서 강인한 유전자 서브셋은 파킨슨병을 관장할 것으로 예측되는 24개의 바이오 표지자를 발견하는 데도 사용된다. 논문을 통해 발견된 강인 유전자 하위 집합은 SVM이나 PBL-McRBFN과 같은 기존의 파킨슨 병 진단 방법들을 통해 검증되었다. 실시된 두 가지 방법(SVM과 PBL-McRBFN)에 대해 모두 최대 일반화 성능을 나타내었다.

하이브리드 균형 표본 유전 알고리즘과 극한 기계학습에 기반한 암 아류형 분류기 (Cancer subtype's classifier based on Hybrid Samples Balanced Genetic Algorithm and Extreme Learning Machine)

  • ;;최용수
    • 디지털콘텐츠학회 논문지
    • /
    • 제17권6호
    • /
    • pp.565-579
    • /
    • 2016
  • 본 논문에서는 극한 기계학습을 이용하는 하이브리드 균형 표본 유전자 알고리즘(hSBGA-ELM)을 기반으로 한 새로운 암 아류형 분류자를 제안하였다. 제안 된 암 아류형 분류자는 정확한 암 아류형 분류기 설계를 위해 공개 전체암지도 (Global Cancer Map)로부터 15063개의 유전자 발현 데이터를 사용합니다. 제안된 방법에서는 14가지(유방암, 전립선 암, 폐암, 대장 암, 림프종, 방광, 흑색 종, 자궁, 백혈병, 신장, 췌장, 난소, 중피종 및 CNS)의 암 아류형을 효율적으로 분류합니다. 제안 된 hSBGA-ELM은 유전자 선택 절차 및 암 아류형 분류를 하나의 프레임 워크로 단일화 한다. 제안 된 하이브리드 균형 표본 유전 알고리즘은 GCM 데이터베이스에서 이용 가능한 16,063 개의 유전자로부터 암 아류형 분류를 담당하는 축소된 강인 유전자 셋을 찾는다. 선택/축소된 유전자 세트는 익스트림 기계학습을 이용하여 암 아류형 분류기를 구성하는데 사용된다. 결과적으로, 크기가 축소된 강인 유전자 집합이 제안하는 암 아류형 분류기의 안정된 일반화 성능을 보장하게 한다. 제안 된 hSBGA-ELM은 암에 관여하는 것으로 예측되는 95개의 유전자를 발견하였으며 기존의 암 아류형 분류기와의 비교를 통해 제안 된 방법의 효율을 보여준다.

Combining Dynamic Time Warping and Single Hidden Layer Feedforward Neural Networks for Temporal Sign Language Recognition

  • Thi, Ngoc Anh Nguyen;Yang, Hyung-Jeong;Kim, Sun-Hee;Kim, Soo-Hyung
    • International Journal of Contents
    • /
    • 제7권1호
    • /
    • pp.14-22
    • /
    • 2011
  • Temporal Sign Language Recognition (TSLR) from hand motion is an active area of gesture recognition research in facilitating efficient communication with deaf people. TSLR systems consist of two stages: a motion sensing step which extracts useful features from signers' motion and a classification process which classifies these features as a performed sign. This work focuses on two of the research problems, namely unknown time varying signal of sign languages in feature extraction stage and computing complexity and time consumption in classification stage due to a very large sign sequences database. In this paper, we propose a combination of Dynamic Time Warping (DTW) and application of the Single hidden Layer Feedforward Neural networks (SLFNs) trained by Extreme Learning Machine (ELM) to cope the limitations. DTW has several advantages over other approaches in that it can align the length of the time series data to a same prior size, while ELM is a useful technique for classifying these warped features. Our experiment demonstrates the efficiency of the proposed method with the recognition accuracy up to 98.67%. The proposed approach can be generalized to more detailed measurements so as to recognize hand gestures, body motion and facial expression.