• Title/Summary/Keyword: extraction solution

Search Result 1,184, Processing Time 0.032 seconds

Response to Plant Hormones of Senescence-related Genes for Cucumis sativus L. in Cotyledon Development (오이 떡잎에서 노쇠화 관련 유전자들의 식물 호르몬에 대한 반응 연구)

  • Cha, Hyeon Jeong;Kim, Dae-Jae
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.895-903
    • /
    • 2016
  • This study was carried out to discover the response of cucumber (Cucumis sativus L.) senescence- associated genes (SAGs) to several plant hormones in detached and developing cotyledon. Accordingly, a collection of cucumber SAGs were examined to characterize their gene expression response through semi-quantitative RT-PCR. Cotyledons were excised at day 14 after seed sowing from plantlets, then incubated in 100 μM each of IAA or zeatin solution for up to 4 days in light and darkness. They were collected at 2-day intervals and used for total RNA extraction and subjected to RT-PCR. Gene expression levels of several cucumber SAGs were significantly changed during the incubation period. More than five cucumber SAGs involving SAG 60 responded to the IAA and zeatin treatment. In the ethylene response study, cotyledons were exposed up to 10 days by ethylene gas. Most of the cucumber SAGs did not show immediate response to ethylene in green cotyledon. The exceptions were PCK, SAG 158, and SAG 288 genes, which responded after 1 day of exposure to green cotyledon, while ICL and SAG 281 revealed strong responses after 10 days of being exposed to yellowing cotyledon. These results suggest that several cucumber SAGs react actively in response to starvation or senescence against exogenously applied stimulus. This induced senescence response is able to understand the SAGs role in lipids and amino acids metabolism partly and function in organ senescence during development.

Isolation and Identification of Antioxidant Compounds of Various Solvents Extracted from Eriobotrya japonica Leaves (비파 잎의 추출용매별 항산화성 검증과 활성물질의 분리 및 동정)

  • Ham, Hyeon-Suk;Lee, Se-Yeul;Lee, Dong-Wan;Seong, Jong-Hwan;Kim, Han-Soo;Kim, Dong-Seob;Lee, Young-Guen
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1166-1172
    • /
    • 2012
  • To investigate potential medicinal or functional uses of Eriobotrya japonica, this study focused on the isolation and identification of antioxidant compounds from Eriobotrya japonica leaves. Various solvents were extracted from the leaves, and their scavenging effect on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals was measured, in addition to their superoxide dismutase-like activity, polyphenol compounds, and flavonoid content. Ethyl acetate extract exhibited the strongest scavenging effect in a 0.2 mM solution of DPPH ($63.24{\pm}2.20%$, $81.83{\pm}2.10%$, and $93.15{\pm}2.31%$ in 0.3, 0.7, and 1.0 mg/ml sample concentrations, respectively). The antioxidant effect of the ethyl acetate extract and methanol extract were generally stronger than that of n-hexane extract. The extracts were further purified by repeated silica gel column chromatography. The antioxidant compounds were identified as phytol, ${\beta}$-sitosterol, and (-)-loliolide using GC/MS.

Stability Evaluation of Vitamin-C Inclusion Complexes Prepared using Supercritical ASES Process (초임계 ASES 공정으로 제조된 Vitamin-C 포접복합체의 안정성 평가)

  • Yang, Jun-Mo;Kim, Seok-Yun;Han, Ji-Hyun;Jung, In-Il;Ryu, Jong-Hoon;Lim, Gio-Bin
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.157-163
    • /
    • 2006
  • A supercritical fluid process, called aerosol solvent extraction system(ASES), is especially suitable to the pharmaceutical, cosmetic and food industries due to its environmentally-friendly, non-toxic and residual solvent-free properties. In particular, the application of the ASES process to the processing of thermo-labile bioactive compounds has received attention of many scientists and engineers because of its low-temperature operating conditions. Unstable substances such as Vitamin-C and Vitamin-A can be effectively protected from degradation during the preparation process, because the ASES process is free from oxygen and moisture. In this study, Vitamin-C was formulated with 2-hydroxypropyl-${\beta}$-cyclodextrin (HP-${\beta$-CD) for enhancement of Vitamin-C stability and bioavailability using the ASES process. To investigate the influence of the preparation process on the stability of Vitamin-C, Vitamin-C/HP-${\beta}$-CD inclusion complexes were prepared using both conventional solvent evaporation method and ASES process, and stored in a 50 mM phosphate buffer solution of pH 7.0 at $25^{\circ}C$ for 24 hours. From the experimental results, the stability of the Vitamin-C/HP-${\beta}$-CD inclusion complex prepared from the ASES process was found to be much higher than that of pure Vitamin-C and the Vitamin-C/HP-${\beta}$-CD inclusion complex prepared by the solvent evaporation method. The stability of Vitamin-C was observed to increase with the decrease of temperature at a constant pressure or with the increase of pressure at a constant temperature.

Synthesis of Mesoporous Silica Using Municipal Solid Waste Incinerator Ash Slag : Influence of NaOH Concentration (생활(生活) 폐기물(廢棄物) 소각재(燒却材) 슬래그를 이용(利用)한 메조포러스 실리카 합성(合成) : NaOH 농도(濃度)의 영향(影響))

  • Han, Yo-Sep;Jung, Jong-Hoon;Park, Jai-Koo
    • Resources Recycling
    • /
    • v.19 no.1
    • /
    • pp.40-48
    • /
    • 2010
  • It was investigated that effects of NaOH concentration on synthesis of mesoporous materials using municipal solid waste incinerator ash slag (MSWI-ash slag). In order to increase the purity and maximize the amount of extracted Si content the raw MSWI-ash slag was mechanically activated. Extraction of Si from the MSWI-ash slag was carried out by alkali treatment using concentrated NaOH solution, which varied from 1M to 4M. Physical properties (i.e., pore size, specific surface area and total pore volume) of the synthesized mesoporous silica were also evaluated as a function of NaOH concentration via BET, SEM, TEM and small-angle X-ray scattering analyses. Over the entire range of NaOH concentration investigated (i.e., 1-4M), the synthesized mesoporous materials were determined to be SBA-15, which exhibited a hexagonal structure with the pore size of approximately 7 nm. On the other hand, specific surface area and total pore volume increased with NaOH concentration up to 3M while the values decreased at 4M, indicating that the optimal NaOH concentration for the synthesized mesoporous silica was approximately 3M. Further comparison analysis between two conditions (3M versus 4M) showed that the decrease in two physical properties at 4M NaOH concentration was likely due to the potential inhibition by excess Na ions on the formation of mesophase and the consequent increase of pore wall thickness by remaining Si ions.

Adsorption Characteristic of Brownish Dark Colored Compounds from the Hot Water Extract of Auricularia auricula Fruit Body (흑목이 버섯 자실체의 열수추출물로부터 흑갈색 색소 성분의 흡착 특성)

  • Kim, Hyeon-Min;Hur, Won;Lim, Kun Bin;Lee, Shin-Young
    • Food Engineering Progress
    • /
    • v.13 no.2
    • /
    • pp.138-146
    • /
    • 2009
  • The crude polysaccharide fraction from fruit body of Auricularia auricula were obtained by using hot water extraction and ethanol precipitation. As the crude polysaccharide fraction contained the brownish dark colored compounds, the adsorption study of pigments from the crude polysaccharide using activated carbon was carried out. The pigment compounds showed an absorption characteristic with $\lambda_{max}$ of 230 nm and the absorbance at 230 nm was taken as color intensity. Adsorption capacity of pigment depended on increase of the activated carbon to sample loading ratio. The adsorption capacity increased with increase of pH and temperature in the pH range of 3.0-7.0 and temperature range of 25-40$^{\circ}C$, but decreased in the temperature range of 40-70$^{\circ}C$. The optimum capacity was obtained at addition of 16.7 mg activated carbon per mL sample solution (concentration = 3 mg/mL) at pH of 7.0 and temperature of 40$^{\circ}C$. Treatment for 10 min was sufficient to achieve the 80% decolorization and 1.25 fold purification of polysaccharide. Langmuir isotherm and pseudo second-order kinetic model provided the best fitting for adsorption of the brownish dark colored compounds onto powdered active carbon. The activation energies of adsorption from the Langmuir isotherm parameter in the ranges of 25-40$^{\circ}C$ and 40-70$^{\circ}C$ was -2.54 and 4.38 kcal/g, respectively. The results of low activation energy also indicated that the adsorption process was a physical adsorption which was controlled by diffnsion.

Understanding of a Korean Standard for the Analysis of Hexavalent Chromium in Soils and Interpretation of their Results (토양오염공정시험기준 6가크롬 분석의 이해와 결과 해석)

  • Kim, Rog-Young;Jung, Goo-Bok;Sung, Jwa-Kyung;Lee, Ju-Young;Jang, Byoung-Choon;Yun, Hong-Bae;Lee, Yee-Jin;Song, You-Seong;Kim, Won-Il;Lee, Jong-Sik;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.727-733
    • /
    • 2011
  • A new Korean standard for the determination of Cr(VI) in soils has been officially published as ES 07408.1 in 2009. This analytical method is based on the hot alkaline digestion and colorimetric detection prescribed by U.S. EPA method 3060A and 7196A. The hot alkaline digestion accomplished using 0.28 M $Na_2CO_3$ and 0.5 M NaOH solution (pH 13.4) at $90{\sim}95^{\circ}C$ determines total Cr(VI) in soils extracting all forms of Cr(VI), including water-soluble, adsorbed, precipitated, and mineral-bound chromates. This aggressive alkaline digestion, however, proved to be problematic for certain soils which contain large amounts of soluble humic substances or active manganese oxides. Cr(III) could be oxidized to Cr(VI) by manganese oxides during the strong alkaline extraction, resulting in overestimation (positive error) of Cr(VI). In contrast, Cr(VI) reduction by dissolved humic matter or Fe(II) could occur during the neutralization and acidic colorimetric detection procedure, resulting in underestimation (negative error) of Cr(VI). Futhermore, dissolved humic matter hampered the colorimetric detection of Cr(VI) using UV/Vis spectrophotometer due to the strong coloration of the filtrate, resulting in overestimation (positive error) of Cr(VI). Without understanding the mechanisms of Cr(VI) and Cr(III) transformation during the analysis it could be difficult to operate the experiment in laboratory and to evaluate the Cr(VI) results. For this reason, in this paper we described the theoretical principles and limitations of Cr(VI) analysis and provided useful guidelines for laboratory work and Cr(VI) data analysis.

Antibacterial effect of Zingiberaceae extracts mediated photodynamic therapy on Streptococcus mutans (Streptococcus mutans에 대한 생강과 천연추출물의 광역학 항균효과)

  • Hwang, Hye-Rim;Kang, Si-Mook;Lee, Eun-song;Kim, Baek-Il
    • The Journal of the Korean dental association
    • /
    • v.57 no.10
    • /
    • pp.560-568
    • /
    • 2019
  • Purpose: This study evaluated the antibacterial effects of curcuma, ginger, and finger root extracts in water-soluble powder on planktonic Streptococcus mutans(S.mutans), which is known to cause dental caries, in order to confirm whether these extracts could perform as photosensitizers for the effects of photodynamic therapy (PDT). Methods: This study used the strain of streptococcus mutans ATCC 25175 distributed by the Korean Collection for Type Cultures of the Korea Research Institute of Bioscience & Biotechnology. Commercial edible curcuma, ginger and finger root were used as the natural extracts for the use of photosensitizer. To extract organic solvent, 3 g of each powder was mixed in $30m{\ell}$ of dimethyl sulfoxide (DMSO, VWR, Germany) before extraction. $1.8m{\ell}$ of the photosensitizer solution, manufactured in the concentrations of 5, 0.5, and $0.05mg/m{\ell}$, was mixed with $0.2m{\ell}$ of the S. mutans culture medium that had been cultured for 2 days. To induce the photodynamic reaction, Qraycam (AIOBIO, Seoul, Korea) equipped with 405 nm LED was used to expose light for 5 minutes to irradiate 59 nW energy for 300 seconds. Results: Compared with the case with no light, a higher photodynamic therapeutic effect was confirmed with $0.05mg/m{\ell}$ curcuma powder extract, the concentration of $0.5mg/m{\ell}$ and LED light of 405 nm wavelength (p=0.000, p=0.003). $0.05mg/m{\ell}$ of curcuma powder extract and the concentration of $0.5mg/m{\ell}$ showed 100% antibacterial effect when exposed to light, whereas the concentration of $5mg/m{\ell}$ showed 11.95% antibacterial effect. When exposed to light, $0.05mg/m{\ell}$ of ginger powder extract showed an antibacterial effect which didn't statistically decrease. The concentrations of $0.5mg/m{\ell}$ and $5mg/m{\ell}$ did not show any antibacterial effects. As a result of examining any photodynamic therapeutic effects of finger root powder extract on S. mutans, no statistically significant effect was found. Conclusion: The curcuma powder extract is expected to perform as a photosensitizer. Even though belonging to the same ginger family, ginger powder and finger root powder seem difficult to perform as photosensitizer.

  • PDF

Determination of Siderophore from Bacillus Mojavensis Using Liquid Chromatography quadrupole Time-of-flight Tandem Mass Spectrometry (액체크로마토그래피-사중극 비행시간형 탠덤질량분석기를 이용한 Bacillus mojavensis 균주 속 사이드로포어 규명)

  • Cheon, Hae In;Yeo, Mi Seon;Kim, Kang Min;Kang, Jae Seon;Pyo, Jaesung
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.198-201
    • /
    • 2019
  • Recently, it has been reported that Bacillus mojavensis possesses antifungal properties and plant growth-promoting activities, which are similar to the characteristics of siderophore. In this study, the siderophore produced by B. mojavensis was assessed using a solid phase extraction (SPE) cartridge and liquid chromatography quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS). After B. mojavensis was incubated in phenol medium for 16 hr and lyophilized, the sample was dissolved in water and loaded to an SPE cartridge to remove interferences. The cartridge was washed with 5% methanol in water and eluted with 2% formic acid in methanol sequentially. The eluted solution was evaporated under a stream of nitrogen gas and reconstituted in methanol. The reconstituted sample was filtered, and $1{\mu}l$ of the sample was assessed using Q-TOF MS/MS. The mass spectrometer was operated using the positive electrospray ionization mode. Based on the mass spectrum and tandem mass spectrum, the siderophore produced by B. mojavensis was bacillibactin, one of the catechol types of siderophore with a molecular weight of 882.2556. This siderophore analysis could provide a justification for the study of B. mojavensis as a functional food and for pharmaceutical applications.

Stabilization of Arsenic in Soil around the Abandoned Coal-Mine Using Mine Sludge Pellets (광산슬러지 펠렛을 이용한 폐석탄광 주변 토양 내 비소 안정화 연구)

  • Ko, Myoung-Soo;Ji, Won-Hyun;Kim, Young-Gwang;Park, Hyun-Sung
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • The purpose of this study was to assess the applicability of acid mine drainage sludge (AMDS) pellets for the arsenic (As) stabilization and to suggest an evaluation method for arsenic stabilization efficiency in soil around abandoned coal mines. The soil samples were collected from the agricultural field around Ham-Tae, Dong-Won, Dong-Hae, and Ok-Dong coal mine. The As concentration in soil was exceeding the criteria of soil pollution level, except for Ham-Tae coal mine. The AMDS pellets are more appropriate to use by reducing dust occurrence during the transport and application process than AMDS powder. In addition, AMDS pellets were maintained the As stabilization efficiency. The application of AMDS pellets for the As stabilization in soil was assessed by column experiments. The AMDS pellets were more effective than limestone and steel slag, which used as the conventional additives for the stabilization process. The As extraction by $0.43M\;HNO_3$ or $1M\;NaH_2PO_4$ solution were appropriate evaluation methods for evaluation of As stabilization efficiency in the soil.

Technical Development for Extraction of Discontinuities in Rock Mass Using LiDAR (LiDAR를 이용한 암반 불연속면 추출 기술의 개발 현황)

  • Lee, Hyeon-woo;Kim, Byung-ryeol;Choi, Sung-oong
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.10-24
    • /
    • 2021
  • Rock mass classification for construction of underground facilities is essential to secure their stabilities. Therefore, the reliable values for rock mass classification from the precise information on rock discontinuities are most important factors, because rock mass discontinuities can affect exclusively on the physical and mechanical properties of rock mass. The conventional classification operation for rock mass has been usually performed by hand mapping. However, there have been many issues for its precision and reliability; for instance, in large-scale survey area for regional geological survey, or rock mass classification operation by non-professional engineers. For these reasons, automated rock mass classification using LiDAR becomes popular for obtaining the quick and precise information. But there are several suggested algorithms for analyzing the rock mass discontinuities from point cloud data by LiDAR scanning, and it is known that the different algorithm gives usually different solution. Also, it is not simple to obtain the exact same value to hand mapping. In this paper, several discontinuity extract algorithms have been explained, and their processes for extracting rock mass discontinuities have been simulated for real rock bench. The application process for several algorithms is anticipated to be a good reference for future researches on extracting rock mass discontinuities from digital point cloud data by laser scanner, such as LiDAR.