• Title/Summary/Keyword: extraction condition

Search Result 1,143, Processing Time 0.031 seconds

Condition Monitoring in Multilayer Stacking Processes (적층 공정에서의 상태 기반 모니터링)

  • Min, Hyungcheol;Lee, Younggon;Jeong, Haedong;Park, Seungtae;Lee, Seungchul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.739-742
    • /
    • 2014
  • In the process of MLCC manufacturing, MLCC stacking process is the key process of making high quality MLCC. Since MLCC is small components, the entire process of MLCC stacking process is minute and sensitive to micro errors. To prevent micro error, we suggest condition-based monitoring which quantifies error based on feature extraction and quantifying error method. As results, it has been shown that the suggested algorithm has effectiveness of condition based monitoring of MLCC stacker.

  • PDF

Extraction Condition of Beverage Base for the Processing of Hydrangea serrata Seringe (수국차(Hydrangea serrata Seringe)의 액상 가공을 위한 추출조건 설정)

  • 김인호;정낙희;한대석;이창호;오세욱
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.7
    • /
    • pp.1168-1171
    • /
    • 2003
  • Water extraction of Suguk (Hydrangea serrata Seringe) was conducted for optimum condition of beverage processing on the boil or dip in water. Extraction samples for sensory evaluation (color, flavor, sweetness, bitterness, astringency) of the plant were boiled in water ranging 0.1%∼0.4% (w/v) or dipped in water ranging 0.2%∼1.0% (w/v) during 2 min. Samples boiled in water were evaluated low sensory quality with strong bitter and astringent taste. Samples dipped in water showed higher value than that boiled in water on the sensory evaluation. Sample 0.5% (w/v) dipped in water at 10$0^{\circ}C$ during 2 min. was decided as an optimum condition for beverage processing of the plant.

Preparation and Storage Conditions of Oleoresin from Root Portion of Peeled Garlic (박피마늘 뿌리부분을 이용한 Oleoresin의 제조 및 저장조건)

  • Kim, Sang-Kyun;Cha, Bo-Sook;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.1321-1326
    • /
    • 1998
  • Extraction and storage conditions of oleoresin were studied from root portion of peeled garlic, an waste of garlic industry. Extraction with ethanol and methanol showed an high solid yields of $27{\sim}37%$ at the temperature range of $30{\sim}50^{\circ}C$. Two hours of extraction were found to be economic because of no significant increase in furthur extraction. Storage of the oleoresin under anaerobic condition such as vaccum or nitrogen resulted in a less changes in pH, total acidity, color and thiosulfinate content, than those changes under aerobic condition. Most of the thiosulfinate was decreased for all conditions after 14 days of storage at $25^{\circ}C$. Glucose and sucrose were increased and most of organic acids were decreased during storage under nitrogen condition. Addition of ascorbic acid and cysteine into oleoresin retained the garlic flavor, effectively.

  • PDF

Optimization of Total Flavonoids Extraction Process from Wheat Sprout using Central Composite Design Model (중심합성계획모델을 이용한 밀싹으로부터 플라보노이드성분의 추출공정 최적화)

  • Lee, Seung Bum;Wang, Xiaozheng;Yoo, Bong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.446-451
    • /
    • 2018
  • Effective ingredients were extracted using wheat sprout with high levels of flavonoids, and the extraction process was optimized with a central composite design model. The response value of the central composite design model establishes the extraction yield and the content of the flavonoids. The main and interactive effects were then analyzed depending on independent variables such as the extraction time, the volume ratio of alcohol to ultrapure water, and the extraction temperature. The extraction time and temperature were relatively large for the extraction yield. For the total flavonoids, the extraction time was most significantly affected. Considering both the extraction yield and the content of the total flavonoids, optimal extraction conditions were as follows: the extraction time (2.44 h), volume ratio of alcohol to ultrapure water (50.00 vol%), extraction temperature ($54.41^{\circ}C$). Under these condition, the extraction yield was 30.14 wt% and the content of the total flavonoids was $35.37{\mu}g\;QE/mL\;dw$. From the actual experimental result, the extraction yield under this condition was 29.92 wt% and the content of the total flavonoids was $35.32{\mu}g\;QE/mL\;dw$, which had an error rate of 0.39% and 0.74%, respectively. This is a multi-analysis comprehensive analysis that analyzes two simultaneous values of responses, but is considered to be highly accurate and also provides an excellent reliability of the optimization process in this study.

Ash Reduction and the Change of Fuel Properties for Spent Mushroom Substrates by Acid Solution Extraction (산(acid) 첨가 용매 추출에 의한 폐버섯배지 회분 감소 및 연료특성 변화)

  • Lee, Eun-Jee;Oh, Doh-gun;Kim, Sun-Mee;Park, Eun-Suk;We, Sung-Gook
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.365-374
    • /
    • 2010
  • The ash reduction effects and fuel property changes of spent mushroom substrates by acid solution extraction, and the production possibilities of wood pellet fuel using them were studied. The ash weight of spent Pleurotus eryngii substrates was reduced from 8.81%(w/w) to 3.33%(w/w), and calorific value was increased from 3,958.3 kcal/kg to 4219.2 kcal/kg when extracted with a mixture of Acetic acid 2%(w/w) and Anhydrous citric acid 1%(w/w) in condition of liquid ratio 1:8, extraction temperature $55^{\circ}C$ and extraction time 180 min. The ash weight of spent Flammulina velutipes substrates was reduced from 14.91%(w/w) to 4.07%(w/w), and calorific value was increased from 4,190.3 kcal/kg to 4,219.2 kcal/kg when extracted with a mixture of Acetic acid 3%(w/w) and Anhydrous citric acid 1%(w/w) in condition of liquid ratio 1:8, extraction temperature $65^{\circ}C$ and extraction time 180 min. The ash weight of spent Pleurotus osteratus substrates was reduced from 3.31%(w/w) to 0.59%(w/w), and the smallest reduction was in calorific value from 4,558.6 kcal/kg to 4,216.2 kcal/kg when extracted with a mixture of Acetic acid 1%(w/w) and Anhydrous citric acid 1%(w/w) in condition of liquid ratio 1:8, extraction temperature $65^{\circ}C$ and extraction time 180 min.

Face Extraction using Genetic Algorithm, Stochastic Variable and Geometrical Model (유전 알고리즘, 통계적 변수, 기하학적 모델에 의한 얼굴 영역 추출)

  • 이상진;홍준표이종실홍승홍
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.891-894
    • /
    • 1998
  • This paper introduces an automatic face region extraction method. This method consists of two part: face recognition and extraction of facial organs which are eye, eyebrow, nose and mouth. In first stage, we use genetic algorithms(GAs) to get face region in complex background. In second stage, we use Geometrical Face Model to textract eye, eyebrow, nose and mouth. In both stage, stochastic component is used to deal with the problems caused by had lighting condition. According to this value, blurring number is determined. Average Computation time is less than 1 sec, and using this method we can extract facial feature efficiently from several images which has different lightning condition.

  • PDF

Colorimetric Determination of Acidic Polysaccharide from Panax ginseng, its Extraction Condition and Stability (인삼 산성다당체의 비색정량 방법과 그 추출조건 및 안정성)

  • 도재호;이형옥
    • Journal of Ginseng Research
    • /
    • v.17 no.2
    • /
    • pp.139-144
    • /
    • 1993
  • The method for colorimetric determination of acidic polysaccharide from Panax ginseng was investigated. It is possible to apply the method of carbazole-sulfuric acid to determination of pectin, and also to measure the amount of pectin in the mixture of various high molemlu compounds such as starch. cellulose and gum, etc. When the method of carbazole-sulfuric acid was applied to determine the amount of acidic polysaccharide, optical density at 525 nm increased linearly with an increase in the concentration of pure acidic polysaccharide. Effective extraction temperature with water for the determination of the amount of ginseng acidic polysaccharide (GAP) was $80{\circ}C$. In order to separate or concentrate GAP it was appropriate to precipitate the extract only once with 80% ethyl alcohol. GAP was very stable at $100{\circ}C$ for 4 hrs in aqueous solution and between pH values of 5.0~ 12.0.

  • PDF

Preparation of Red Ginseng Extract Rich in Acidic Polysaccharide from Red Tail Ginseng Marc Produced After Extraction with 70% Ethyl Alcohol (홍미삼 알콜 추출박을 이용한 산성다당체 다량 함유 홍삼 엑기스 제조)

  • 도재호;이종원
    • Journal of Ginseng Research
    • /
    • v.20 no.1
    • /
    • pp.60-64
    • /
    • 1996
  • In this study, we investigated the appropriate conditions to extract acidic polysaccharide and to prepare red ginseng extract being rich in acidic polysaccharide from red tail ginseng marc produced after manufacturing alcoholic extract from red tail ginseng. Amount of acidic polysaccharide in red tail ginseng marc was about 11%. The best condition for the extraction of acidic polysaccharide from the marc was using of 3~5 mg of $\alpha$-amylase/g residue/15 ml of distilled water, and the amount of acidic polysaccharide in water extract of the residue treated with $\alpha$-amylase was about 27%. So, it is possible to manufacture red ginseng extract being rich in acidic polysaccharide using water extract of red tail ginseng alcoholic residue as extraction solvent. From the above results, we suggest that red tail ginseng residue produced by manufacturing alcoholic extract of red tail ginseng has high potencies in the utilization of waste material.

  • PDF

Studies on the Natural Dyes(12) -Dyeing Properties of Amur Cork Tree Colors for Silk- (천연염료에 관한 연구(12) -황벽 색소의 견섬유에 대한 염색성-)

  • 조경래;강미정
    • Textile Coloration and Finishing
    • /
    • v.12 no.4
    • /
    • pp.239-247
    • /
    • 2000
  • The coloring matter was extracted from the heartwood of Amur cork tree by distilled water. Change of UV-Visible spectra of coloring matter solution by extraction condition and stability for irradiation were determined, and the effect of repeated dyeing with condition of dyebath and mordanting method on shade depth and lightfastness were also investigated. The results are as follows : 1) Absorbance of Amur cork tree extract increased with the lapse of extraction time. λmax of color solution extracted from Amur cork tree was found at 420, 333, and 262nm. 2) Absorbance of Amur cork tree extract decreased remarkably after 2hr irradiation. 3) The K/S of silk fabrics increased with the increase of dyeing temperature, time, amounts of Amur cork tree for extraction, and pH of color solution. 4) K/S of silk fabrics dyed by repeated dyeing method was affected by pH and concentration of color solution. 5) Lightfastness of silk twice dyed with Amur cork tree extract after pre-mordanted by 8%(o.w.f) chromium acetate was moderately improved.

  • PDF

Extraction of Phenolic Compounds from grape Seed Using Supercritical $CO_2$ and Ethanol as a Co-solvent (초임계 이산화탄소와 에탄올 보조용매를 이용한 포도씨로부터의 페놀성 화합물의 추출)

  • Lee, Won-Young;Chang, Kyu-Seob;Choi, Yong-Hee
    • Food Science and Preservation
    • /
    • v.7 no.2
    • /
    • pp.177-183
    • /
    • 2000
  • A supercritical fluid extraction was performed for the extraction of phenolics from grape seeds which up to now have been discarded. The optimum condition for extraction process was predicted through response surface methodology using central composit experimental design. The extraction amount of grape seed phenolics was increased by increasing extraction temperature, pressure, and concentration of co-solvent (ethanol). The optimum extraction conditions were 84.83$^{\circ}$C, 51.50MPa and 1.27% ethanol. The yield of phenolics using SFE was higher with 3 folds than ethanol and 4 folds than hexane but less than 80% methanol. In the respects of food poisoning, the approved solvents were restricted to ethanol and hexane. So, SFE for extraction of phenolics could be powerful alternative method for solvent extraction.

  • PDF