• Title/Summary/Keyword: extracellular vesicles

Search Result 70, Processing Time 0.024 seconds

Characterization of Sea Urchin Gonad-derived Extracellular Vesicles and Study of Their Effects on Nerve Cells (성게 생식소 유래 세포외소포체 특성 분석 및 신경세포에 미치는 영향 연구)

  • Byeong-Hoon Choi;Sung-Han Jo;Sang-Hyug Park
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.20-25
    • /
    • 2024
  • Extracellular vesicles (EVs) are nano-sized lipid bilayer vesicles released by cells. EVs act as messengers for cell-to-cell communication. Inside, it contains various substances that show biological activity, such as proteins, lipids, nucleic acids, and metabolites. The study of EVs extracted from terrestrial organisms and stem cells on inflammatory environments and tissue regeneration have been actively conducted. However, marine organisms-derived EVs are limited. Therefore, we have extracted EVs from sea urchins belonging to the Echinoderm group with their excellent regenerative ability. First, we extracted extracellular matrix (ECM) from sea urchin gonads treated with hypotonic buffer, followed by collagenase treatment, and filtration to collect ECM-bounded EVs. The size of sea urchin gonad-derived EVs (UGEVs) is about 20-100 nm and has a round shape. The protein content was higher after EVs burst than before, which is evidence that proteins are contained inside. In addition, proteins of various sizes are distributed inside. PKH-26 was combined with UGEVs, which means that UGEVs have a lipid membrane. PHK-26-labeled UGEVs were successfully uptaken by cells. UGEVs can be confirmed to have the same characteristics as traditional EVs. Finally, it was confirmed that Schwann cells were not toxic by increasing proliferation after treatment.

Extracellular vesicles as novel carriers for therapeutic molecules

  • Yim, Nambin;Choi, Chulhee
    • BMB Reports
    • /
    • v.49 no.11
    • /
    • pp.585-586
    • /
    • 2016
  • Extracellular vesicles (EVs) are natural carriers of biomolecules that play central roles in cell-to-cell communications. Based on this, there have been various attempts to use EVs as therapeutic drug carriers. From chemical reagents to nucleic acids, various macromolecules were successfully loaded into EVs; however, loading of proteins with high molecular weight has been huddled with several problems. Purification of recombinant proteins is expensive and time consuming, and easily results in modification of proteins due to physical or chemical forces. Also, the loading efficiency of conventional methods is too low for most proteins. We have recently proposed a new method, the so-called exosomes for protein loading via optically reversible protein-protein interaction (EXPLORs), to overcome the limitations. Since EXPLORs are produced by actively loading of intracellular proteins into EVs using blue light without protein purification steps, we demonstrated that the EXPLOR technique significantly improves the loading and delivery efficiency of therapeutic proteins. In further in vitro and in vivo experiments, we demonstrate the potential of EXPLOR technology as a novel platform for biopharmaceuticals, by successful delivery of several functional proteins such as Cre recombinase, into the target cells.

The theranostic roles of extracellular vesicles in pregnancy disorders

  • Saadeldin, Islam M.;Tanga, Bereket Molla;Bang, Seonggyu;Fang, Xun;Yoon, Ki-Young;Lee, Sanghoon;Cho, Jongki
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.2-12
    • /
    • 2022
  • Extracellular vesicles (EVs) are nanovesicles that carry bioactive cargoes of proteins, lipids, mRNAs, and miRNAs between living cells. Their role in cellular communication has gained the attention of several research reports globally in the last decade. EVs are critically involved in sperm functions, oocyte functions, fertilization, embryonic development, and pregnancy. The review summarizes the state-of-the-art of EVs research in the diagnostic and therapeutic (theranostic) potentials of the EVs during the pregnancy that might provide a solution for gestational disturbances such as implantation failure, maternal health problems, gestational diabetes, and preeclampsia. EVs can be found in all biological fluids of the fetus and the mother and would provide a non-invasive and excellent tool for diagnostic purposes. Moreover, we provide the current efforts in manufacturing and designing targeted therapeutics using synthetic and semi-synthetic nanovesicles mimicking the natural EVs for efficient drug delivery during pregnancy.

Immune cell-derived small extracellular vesicles in cancer treatment

  • Choi, Sung-Jin;Cho, Hanchae;Yea, Kyungmoo;Baek, Moon-Chang
    • BMB Reports
    • /
    • v.55 no.1
    • /
    • pp.48-56
    • /
    • 2022
  • Small extracellular vesicles (sEVs) secreted by most cells carry bioactive macromolecules including proteins, lipids, and nucleic acids for intercellular communication. Given that some immune cell-derived sEVs exhibit anti-cancer properties, these sEVs have received scientific attention for the development of novel anti-cancer immunotherapeutic agents. In this paper, we reviewed the latest advances concerning the biological roles of immune cell-derived sEVs for cancer therapy. sEVs derived from immune cells including dendritic cells (DCs), T cells, natural-killer (NK) cells, and macrophages are good candidates for sEV-based cancer therapy. Besides their role of cancer vaccines, DC-shed sEVs activated cytotoxic lymphocytes and killed tumor cells. sEVs isolated from NK cells and chimeric antigen receptor (CAR) T cells exhibited cytotoxicity against cancer cells. sEVs derived from CD8+ T and CD4+ T cells inhibited cancer-associated cells in tumor microenvironment (TME) and activated B cells, respectively. M1-macrophage-derived sEVs induced M2 to M1 repolarization and also created a pro-inflammatory environment. Hence, these sEVs, via mono or combination therapy, could be considered in the treatment of cancer patients in the future. In addition, sEVs derived from cytokine-stimulated immune cells or sEV engineering could improve their anti-tumor potency.

The Role of Extracellular Vesicles in Senescence

  • Oh, Chaehwan;Koh, Dahyeon;Jeon, Hyeong Bin;Kim, Kyoung Mi
    • Molecules and Cells
    • /
    • v.45 no.9
    • /
    • pp.603-609
    • /
    • 2022
  • Cells can communicate in a variety of ways, such as by contacting each other or by secreting certain factors. Recently, extracellular vesicles (EVs) have been proposed to be mediators of cell communication. EVs are small vesicles with a lipid bilayer membrane that are secreted by cells and contain DNA, RNAs, lipids, and proteins. These EVs are secreted from various cell types and can migrate and be internalized by recipient cells that are the same or different than those that secrete them. EVs harboring various components are involved in regulating gene expression in recipient cells. These EVs may also play important roles in the senescence of cells and the accumulation of senescent cells in the body. Studies on the function of EVs in senescent cells and the mechanisms through which nonsenescent and senescent cells communicate through EVs are being actively conducted. Here, we summarize studies suggesting that EVs secreted from senescent cells can promote the senescence of other cells and that EVs secreted from nonsenescent cells can rejuvenate senescent cells. In addition, we discuss the functional components (proteins, RNAs, and other molecules) enclosed in EVs that enter recipient cells.

Extracellular RNAs and Extracellular Vesicles: Inception, Current Explorations, and Future Applications

  • Perumal, Ayyappasamy Sudalaiyadum;Chelliah, Ramachandran;Datta, Saptashwa;Krishna, Jayachandran;Samuel, Melvin S.;Ethiraj, Selvarajan;Park, Chae Rin
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.535-543
    • /
    • 2020
  • In addition to the ubiquitous roles of cellular RNA in genetic regulations, gene expression and phenotypic variations in response to environmental cues and chemotactic signals, the regulatory roles of a new type of RNA called extracellular RNAs (exRNAs) are an up-and-coming area of research interest. exRNA is transported outside the cell through membrane blebs known as membrane vesicles or extracellular vesicles (EVs). EV formation is predominant and conserved among all microbial forms, including prokaryotes, eukaryotes, and archaea. This review will focus on the three major topics concerning bacterially derived exRNAs, i.e., 1) the discovery of exRNA and influence of extraneous RNA over bacterial gene regulations, 2) the known secretion mechanism for the release of exRNA, and 3) the possible applications that can be devised with these exRNA secreted by different gram-negative and gram-positive bacteria. Further, this review will also provide an opinion on exRNA- and EV-derived applications such as the species-specific exRNA markers for diagnostics and the possible roles of exRNA in probiotics and the epigenetic regulations of the gut microbiome.

Molecular characterization and functionality of rumen-derived extracellular vesicles using a Caenorhabditis elegans animal model

  • Hyejin Choi;Daye Mun;Sangdon Ryu;Min-jin Kwak;Bum-Keun Kim;Dong-Jun Park;Sangnam Oh;Younghoon Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.652-663
    • /
    • 2023
  • The rumen fluids contain a wide range of bacteria, protozoa, fungi, and viruses. The various ruminal microorganisms in the rumen provide nutrients by fermenting the forage they eat. During metabolic processes, microorganisms present in the rumen release diverse vesicles during the fermentation process. Therefore, in this study, we confirmed the function of rumen extracellular vesicles (EVs) and their interaction with the host. We confirmed the structure of the rumen EVs by transmission electron microscope (TEM) and the size of the particles using nanoparticle tracking analysis (NTA). Rumen EVs range in size from 100 nm to 400 nm and are composed of microvesicles, microparticles, and ectosomes. Using the Caenorhabditis elegans smart animal model, we verified the interaction between the host and rumen EVs. Exposure of C. elegans to rumen EVs did not significantly enhance longevity, whereas exposure to the pathogenic bacteria Escherichia coli O157:H7 and Staphylococcus aureus significantly increased lifespan. Furthermore, transcriptome analysis showed gene expression alterations in C. elegans exposed to rumen EVs, with significant changes in the metabolic pathway, fatty acid degradation, and biosynthesis of cofactors. Our study describes the effect of rumen EV interactions with the host and provides novel insights for discovering biotherapeutic agents in the animal industry.

Multifactorial Regulation of G Protein-Coupled Receptor Endocytosis

  • Zhang, Xiaohan;Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • v.25 no.1
    • /
    • pp.26-43
    • /
    • 2017
  • Endocytosis is a process by which cells absorb extracellular materials via the inward budding of vesicles formed from the plasma membrane. Receptor-mediated endocytosis is a highly selective process where receptors with specific binding sites for extracellular molecules internalize via vesicles. G protein-coupled receptors (GPCRs) are the largest single family of plasma-membrane receptors with more than 1000 family members. But the molecular mechanisms involved in the regulation of GPCRs are believed to be highly conserved. For example, receptor phosphorylation in collaboration with ${\beta}$-arrestins plays major roles in desensitization and endocytosis of most GPCRs. Nevertheless, a number of subsequent studies showed that GPCR regulation, such as that by endocytosis, occurs through various pathways with a multitude of cellular components and processes. This review focused on i) functional interactions between homologous and heterologous pathways, ii) methodologies applied for determining receptor endocytosis, iii) experimental tools to determine specific endocytic routes, iv) roles of small guanosine triphosphate-binding proteins in GPCR endocytosis, and v) role of post-translational modification of the receptors in endocytosis.

Stem cell-derived extracellular vesicle therapy for acute brain insults and neurodegenerative diseases

  • Bang, Oh Young;Kim, Ji-Eun
    • BMB Reports
    • /
    • v.55 no.1
    • /
    • pp.20-29
    • /
    • 2022
  • Stem cell-based therapy is a promising approach for treating a variety of disorders, including acute brain insults and neurodegenerative diseases. Stem cells such as mesenchymal stem cells (MSCs) secrete extracellular vesicles (EVs), circular membrane fragments (30 nm-1 ㎛) that are shed from the cell surface, carrying several therapeutic molecules such as proteins and microRNAs. Because EV-based therapy is superior to cell therapy in terms of scalable production, biodistribution, and safety profiles, it can be used to treat brain diseases as an alternative to stem cell therapy. This review presents evidences evaluating the role of stem cell-derived EVs in stroke, traumatic brain injury, and degenerative brain diseases, such as Alzheimer's disease and Parkinson' disease. In addition, stem cell-derived EVs have better profiles in biocompatibility, immunogenicity, and safety than those of small chemical and macromolecules. The advantages and disadvantages of EVs compared with other strategies are discussed. Even though EVs obtained from native stem cells have potential in the treatment of brain diseases, the successful clinical application is limited by the short half-life, limited targeting, rapid clearance after application, and insufficient payload. We discuss the strategies to enhance the efficacy of EV therapeutics. Finally, EV therapies have yet to be approved by the regulatory authorities. Major issues are discussed together with relevant advances in the clinical application of EV therapeutics.

Multiplexed targeting of microRNA in stem cell-derived extracellular vesicles for regenerative medicine

  • Song, Byeong-Wook;Oh, Sekyung;Chang, Woochul
    • BMB Reports
    • /
    • v.55 no.2
    • /
    • pp.65-71
    • /
    • 2022
  • Regenerative medicine is a research field that develops methods to restore damaged cell or tissue function by regeneration, repair or replacement. Stem cells are the raw material of the body that is ultimately used from the point of view of regenerative medicine, and stem cell therapy uses cells themselves or their derivatives to promote responses to diseases and dysfunctions, the ultimate goal of regenerative medicine. Stem cell-derived extracellular vesicles (EVs) are recognized as an attractive source because they can enrich exogenous microRNAs (miRNAs) by targeting pathological recipient cells for disease therapy and can overcome the obstacles faced by current cell therapy agents. However, there are some limitations that need to be addressed before using miRNA-enriched EVs derived from stem cells for multiplexed therapeutic targeting in many diseases. Here, we review various roles on miRNA-based stem cell EVs that can induce effective and stable functional improvement of stem cell-derived EVs. In addition, we introduce and review the implications of several miRNA-enriched EV therapies improved by multiplexed targeting in diseases involving the circulatory system and nervous system. This systemic review may offer potential roles for stem cell-derived therapeutics with multiplexed targeting.