• Title/Summary/Keyword: extracellular signal

Search Result 696, Processing Time 0.029 seconds

Effect of nitric oxide on the expression of matrix metalloproteinases by the UV irradiated human dermal fibroblasts

  • Taeboo Choe;Lee, Bumchun;Park, Inchul;Seokil Hong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.28 no.1
    • /
    • pp.31-41
    • /
    • 2002
  • The production of matrix matalloproteinases(MMPs) by the UV irradiated skin fibroblast and the degradation of extracellular matrix(ECM) by these enzymes is known as one of the main reasons of photoaging. Recently, Fisher group showed that the MMP expression is mainly regulated by the mitogen-activated protein(MAP) kinas family, such as extracellular signal-regulated kinase(ERK), c-Jun amino-terminal kinase(JNK) and p38, each of which forms a signaling pathway. In this work we first examined the effect of nitric oxide (NO) on the production of MMP-1 and MMP-2 by the human dermal fibroblasts (HDFs). NO is a multifunctional messenger molecule generated from L-arginine and involved in many kinds of signaling pathway. We found that the treatment of HDF with NO donor, sodium nitroprusside (SNP) enhanced the expression of MMPs with or without UV irradiation and the treatment with nitric oxide synthase (NOS) inhibitors resulted in the significant decrease of MMPs production. From these results, we concluded that the production of MMPs by the UV irradiated HDF is regulated through the signaling pathway involving NO and cyclic GMP.

Acceleration of Cell Proliferation and Gene Expression in Human Chondrosarcoma Cells Stimulated by Strong Pulse Magnetic Field

  • Shin, Sung Chul;Chung, Eui Ryong;Hwang, Do Guwn
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.14-20
    • /
    • 2013
  • For the treatment of osteoarthritis, pulsed electromagnetic field stimulus has been suggested as a useful therapeutic method in rehabilitative medicine. Most studies have been performed under low-frequency and low-energy to find out biological properties for stimulating chondrocyte with pulsed magnetic field. In this study, the effect of strong pulse magnetic field on the human chondrosarcoma cells (SW-1353) has been investigated by means of cell counting, morphologies, and gene expression of cartilage extracellular matrix genes. The SW-1353 cells were exposed under the field intensities of 270, 100, 55, 36, and 26 mTesla during 6 hours a day in 5 consecutive days. The pulse magnetic field with an LRC oscillating signal has the pulse width of 0.126 msec and stimulation period of 1 sec. For the 270 and 100 mTesla stimulation, the cell proliferation significantly increased in 21-24% as compared with the non-stimulated cells. Gene expression of cartilage extracellular matrix genes (ACAN, COMP and COL2A1) was assayed by quantitative real time-PCR method. The ACAN gene expression showed a significant brightness, which means the increase on gene expression, compared with the non-stimulated cells. Our results suggest that the strong pulse magnetic field stimulation can be utilized to accelerate cell proliferation and gene expression on human chondrosarcoma cells.

Novel potential drugs for the treatment of primary open-angle glaucoma using protein-protein interaction network analysis

  • Parisima Ghaffarian Zavarzadeh;Zahra Abedi
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.6.1-6.8
    • /
    • 2023
  • Glaucoma is the second leading cause of irreversible blindness, and primary open-angle glaucoma (POAG) is the most common type. Due to inadequate diagnosis, treatment is often not administered until symptoms occur. Hence, approaches enabling earlier prediction or diagnosis of POAG are necessary. We aimed to identify novel drugs for glaucoma through bioinformatics and network analysis. Data from 36 samples, obtained from the trabecular meshwork of healthy individuals and patients with POAG, were acquired from a dataset. Next, differentially expressed genes (DEGs) were identified to construct a protein-protein interaction (PPI) network. In both stages, the genes were enriched by studying the critical biological processes and pathways related to POAG. Finally, a drug-gene network was constructed, and novel drugs for POAG treatment were proposed. Genes with p < 0.01 and |log fold change| > 0.3 (1,350 genes) were considered DEGs and utilized to construct a PPI network. Enrichment analysis yielded several key pathways that were upregulated or downregulated. For example, extracellular matrix organization, the immune system, neutrophil degranulation, and cytokine signaling were upregulated among immune pathways, while signal transduction, the immune system, extracellular matrix organization, and receptor tyrosine kinase signaling were downregulated. Finally, novel drugs including metformin hydrochloride, ixazomib citrate, and cisplatin warrant further analysis of their potential roles in POAG treatment. The candidate drugs identified in this computational analysis require in vitro and in vivo validation to confirm their effectiveness in POAG treatment. This may pave the way for understanding life-threatening disorders such as cancer.

CD72 is a Negative Regulator of B Cell Responses to Nuclear Lupus Self-antigens and Development of Systemic Lupus Erythematosus

  • Takeshi Tsubata
    • IMMUNE NETWORK
    • /
    • v.19 no.1
    • /
    • pp.1.1-1.13
    • /
    • 2019
  • Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disease characterized by production of autoantibodies to various nuclear antigens and overexpression of genes regulated by IFN-I called IFN signature. Genetic studies on SLE patients and mutational analyses of mouse models demonstrate crucial roles of nucleic acid (NA) sensors in development of SLE. Although NA sensors are involved in induction of antimicrobial immune responses by recognizing microbial NAs, recognition of self NAs by NA sensors induces production of autoantibodies to NAs in B cells and production of IFN-I in plasmacytoid dendritic cells. Among various NA sensors, the endosomal RNA sensor TLR7 plays an essential role in development of SLE at least in mouse models. CD72 is an inhibitory B cell co-receptor containing an immunoreceptor tyrosine-based inhibition motif (ITIM) in the cytoplasmic region and a C-type lectin like-domain (CTLD) in the extracellular region. CD72 is known to regulate development of SLE because CD72 polymorphisms associate with SLE in both human and mice and CD72-/- mice develop relatively severe lupus-like disease. CD72 specifically recognizes the RNA-containing endogenous TLR7 ligand Sm/RNP by its extracellular CTLD, and inhibits B cell responses to Sm/RNP by ITIM-mediated signal inhibition. These findings indicate that CD72 inhibits development of SLE by suppressing TLR7-dependent B cell response to self NAs. CD72 is thus involved in discrimination of self-NAs from microbial NAs by specifically suppressing autoimmune responses to self-NAs.

The Relationship of the L-type $Ca^{2+}$ Channel on the Depolarization-and Depletion of SR $Ca^{2+}$ -induced Smooth Muscle Contraction and Intracellular $Ca^{2+}$ Mobilization (탈분극과 근장그물 내 $Ca^{2+}$ 고갈-유도 평활근의 수축 및 세포 내 $Ca^{2+}$ 변동에 관여하는 L-형 $Ca^{2+}$ 통로의 상관성)

  • Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.5
    • /
    • pp.65-76
    • /
    • 2007
  • Purpose: It is generally accepted that smooth muscle contraction is triggered by intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) released from intracellular $Ca^{2+}$ stores such as sarcoplasmic teticulum (SR) and from the extracellular space. The increased $[Ca^{2+}]^i$ can phosphorylate the 20,000 dalton myosin light chain $(MLC_{20})$ by activating MLC kinase (MLCK), and this initiates smooth muscle contraction. In addition to the $[Ca^{2+}]_i$MACK-tension pathway, a number of intracellular signal molecules, including mitogen-activated protein kinase (MAPK), protein kinase C (PKC) and others, play important roles in the regulation of smooth muscle contraction. However, the mechanisms regulating contraction of depletion of SR $Ca^{2+}$ in mouse gastric smooth muscle strips is not still clear. Methods: To investigate the rotes of $Ca^{2+}$ influx and SR $Ca^{2+}$ release channel on gastric motility, isometric contraction and $[Ca^{2+}]_i$ were examined in mouse gastric smooth muscle strips. Results: High KCl, ryanodine, an activator of $Ca^{2+-}$induced $Ca^{2+}$ release channel, and cyclopiazonic acid (CPA), an inhibitor of SR $Ca^{2+-}$ATPase evoked a sustained increase in muscle contraction and $[Ca^{2+}]_i$. These increases induced by high KCl, ryanodine, and CPA were partially blocked by application of verapamil ($10{\mu}M$), a L-type $Ca^{2+}$ channel inhibitor. Additionally, in $Ca^{2+-}$free solution (1 mM EGTA), ryanodine and CPA had no effect contraction and $[Ca^{2+}]_i$ in fundic muscle strips. Conclusion: These results that extracellular $Ca^{2+}$ influx and depletion of SR trigger $Ca^{2+}$ influx through verapamil-sensitive $Ca^{2+}$ channel, and extracellular and SR $Ca^{2+}$ store may functionally involve in the subcellular $Ca^{2+}$ mobilization in mouse gastric muscle.

  • PDF

High-Level Expression of Aspergillus ficuum Acetyl Xylan Esterase Gene in Pichia pastoris, (Pichia pastoris에서 Aspergillus ficuum 유래 Acetyl Xylan Esterase 유전자의 과발현)

  • 임재명;김성구;박승문;남수완
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.305-311
    • /
    • 2002
  • Acetyl xylan esterase gene (AXE) from Aspergillus ficuum was cloned and its Pichia expression plasmid, pPICZ$\alpha$C-AXE (4.6 kb), was constructed, in which the AXE gene was under the control of the AOXI promoter and connected downstream of mating factor u-1 signal sequence. The plasmid linearized by Sacl was integrated into the 5'AOXI region of the chromosomal DNA of P. pastoris. In the flask batch culture of P. pastoris transformant on methanol medium, the cell concentration and total AXEase activity reached at 6.0 g-dry cell weight/1 and 77 unit/ml after 36 h cultivation, respectively. In the fed-batch culture employing the optimized methanol and histidine feeding strategy, the cell concentration and total AXEase activity were significantly increased to about 97 g-dry cell weight/1 and 930 unit/ml. Most of AXEase activity (>90%) was found in the extracellular medium and the majority of extracellular protein (>80%) was AXEase enzyme (33.5 kDa). This result means that about 9.8 g/1 of AXEase protein was produced in the extracellular medium.

How Extracellular Reactive Oxygen Species Reach Their Intracellular Targets in Plants

  • Jinsu Lee;Minsoo Han;Yesol Shin;Jung-Min Lee;Geon Heo;Yuree Lee
    • Molecules and Cells
    • /
    • v.46 no.6
    • /
    • pp.329-336
    • /
    • 2023
  • Reactive oxygen species (ROS) serve as secondary messengers that regulate various developmental and signal transduction processes, with ROS primarily generated by NADPH OXIDASEs (referred to as RESPIRATORY BURST OXIDASE HOMOLOGs [RBOHs] in plants). However, the types and locations of ROS produced by RBOHs are different from those expected to mediate intracellular signaling. RBOHs produce O2•- rather than H2O2 which is relatively long-lived and able to diffuse through membranes, and this production occurs outside the cell instead of in the cytoplasm, where signaling cascades occur. A widely accepted model explaining this discrepancy proposes that RBOH-produced extracellular O2•- is converted to H2O2 by superoxide dismutase and then imported by aquaporins to reach its cytoplasmic targets. However, this model does not explain how the specificity of ROS targeting is ensured while minimizing unnecessary damage during the bulk translocation of extracellular ROS (eROS). An increasing number of studies have provided clues about eROS action mechanisms, revealing various mechanisms for eROS perception in the apoplast, crosstalk between eROS and reactive nitrogen species, and the contribution of intracellular organelles to cytoplasmic ROS bursts. In this review, we summarize these recent advances, highlight the mechanisms underlying eROS action, and provide an overview of the routes by which eROS-induced changes reach the intracellular space.

Fabrication and Characterization of Multi-Channel Electrode Array (MEA) (다중 채널 전극의 제작 및 특성 평가)

  • Seong, Rak-Seon;Gwon, Gwang-Min;Park, Jeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.9
    • /
    • pp.423-430
    • /
    • 2002
  • The fabrication and experimentation of multi-channel electrodes which enable detecting and recording of multi-site neuronal signals have been investigated. A multi-channel electrode array was fabricated by depositing 2000${\AA}$ thick Au layer on the 1000${\AA}$ thick Ti adhesion layer on a glass wafer. The metal paths were patterned by wet etching and passivated by depositing a PECVD silicon nitride insulation layer to prevent signals from intermixing or cross-talking. After placing a thin slice of rat cerebellar granule cell in the culture ring located in central portion of the multi-channel electrode plate, a neuronal signal from an electrode which is in contact with the cerebellar granule cell has been detected. It was found that the electrode impedance ranges 200㏀∼1㏁ and the impedance is not changed by cleaning with nitric acid. Also, the impedance is inversely proportion to the exposed electrode area and the cross-talk is negligible when the electrode spacing is bigger than 600$\mu\textrm{m}$. The amplitude and frequency of the measured action potential were 38㎷ and 2㎑, which are typical values. From the experimental results, the fabricated multi-channel electrode array proved to be suitable for multi-site neuronal signal detection for the analysis of a complicated cell network.

Heterologous Expression of Recombinant Transglutaminase in Bacillus subtilis SCK6 with Optimized Signal Peptide and Codon, and Its Impact on Gelatin Properties

  • Wang, Shiting;Yang, Zhigang;Li, Zhenjiang;Tian, Yongqiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1082-1091
    • /
    • 2020
  • Microbial transglutaminases (MTGs) are widely used in the food industry. In this study, the MTG gene of Streptomyces sp. TYQ1024 was cloned and expressed in a food-grade bacterial strain, Bacillus subtilis SCK6. Extracellular activity of the MTG after codon and signal peptide (SP Ync M) optimization was 20 times that of the pre-optimized enzyme. After purification, the molecular weight of the MTG was 38 kDa and the specific activity was 63.75 U/mg. The optimal temperature and pH for the recombinant MTG activity were 50℃ and 8.0, respectively. MTG activity increased 1.42-fold in the presence of β-ME and 1.6-fold in the presence of DTT. Moreover, 18% sodium chloride still resulted in 83% enzyme activity, which showed good salt tolerance. Cross-linking gelatin with the MTG increased the strength of gelatin 1.67 times and increased the thermal denaturation temperature from 61.8 to 75.8℃. The MTG also significantly increased the strength and thermal stability of gelatin. These characteristics demonstrated the huge commercial potential of MTG, such as for applications in salted protein foods.

Anti-inflammatory Activity of Fucoidan with Blocking NF-κB and STAT1 in Human Keratinocytes Cells

  • Ryu, Min Ju;Chung, Ha Sook
    • Natural Product Sciences
    • /
    • v.21 no.3
    • /
    • pp.205-209
    • /
    • 2015
  • Fucoidan, a sulfated polysaccharide is found in several types of edible brown algae. It has shown numerous biological activities; however, the molecular mechanisms on the activity against atopic dermatitis have not been reported yet. We now examined the effects of fucoidan on chemokine production co-induced by TNF-α/IFN-γ, and the possible mechanisms underlying these biological effects. Our data showed that fucoidan inhibited the TNF-α/IFN-γ-induced production of thymus and activation-regulated chemokine (TARC) and macrophagederived chemokine (MDC) mRNA in human keratinocytes HaCaT cells. Also, fucoidan suppressed phosphorylation of nuclear factor kappa B (NF-κB) and activation of signal transducer and activator of transcription (STAT)1 in a dose-dependent manner. In addition, fucoidan significantly inhibited activation of extracellular-signal-regulated kinases (ERK) phosphorylation. These data indicate that fucoidan shows anti-inflammatory effects by suppressing the expression of TNF-α/IFN-γ-induced chemokines by blocking NF-κB, STAT1, and ERK1/2 activation, suggestive of as used as a therapeutic application in inflammatory skin diseases, such as atopic dermatitis.