• 제목/요약/키워드: extracellular material

검색결과 116건 처리시간 0.026초

Ovalbumin Hydrolysates Inhibit Nitric Oxide Production in LPS-induced RAW 264.7 Macrophages

  • Kim, Hyun Suk;Lee, Jae Hoon;Moon, Sun Hee;Ahn, Dong Uk;Paik, Hyun-Dong
    • 한국축산식품학회지
    • /
    • 제40권2호
    • /
    • pp.274-285
    • /
    • 2020
  • In this study, ovalbumin (OVA) hydrolysates were prepared using various proteolytic enzymes and the anti-inflammatory activities of the hydrolysates were determined. Also, the potential application of OVA as a functional food material was discussed. The effect of OVA hydrolysates on the inhibition of nitric oxide (NO) production was evaluated via the Griess reaction, and their effects on the expression of inducible NO synthase (inducible nitric oxide synthase, iNOS) were assessed using the quantitative real-time PCR and Western blotting. To determine the mechanism by which OVA hydrolysates activate macrophages, pathways associated with the mitogen-activated protein kinase (MAPK) signaling were evaluated. When the OVA hydrolysates were added to RAW 264.7 cells without lipopolysaccharide (LPS) stimulation, they did not affect the production of NO. However, both the OVA-Protex 6L hydrolysate (OHPT) and OVA-trypsin hydrolysate (OHT) inhibited NO production dose-dependently in LPS-stimulated RAW 264.7 cells. Especially, OHT showed a strong NO-inhibitory activity (62.35% at 2 mg/mL) and suppressed iNOS production and the mRNA expression for iNOS (p<0.05). Also, OHT treatment decreased the phosphorylation levels of Jun amino-terminal kinases (JNK) and extracellular signal-regulated kinases (ERK) in the MAPK signaling pathway. These findings suggested that OVA hydrolysates could be used as an anti-inflammatory agent that prevent the overproduction of NO.

Expression of Matrix Metalloproteinase-2, but not Caspase-3, Facilitates Distinction between Benign and Malignant Thyroid Follicular Neoplasms

  • Sanii, Sanaz;Saffar, Hiva;Tabriz, Hedieh M.;Qorbani, Mostafa;Haghpanah, Vahid;Tavangar, Seyed M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.2175-2178
    • /
    • 2012
  • Purpose: Definite diagnosis of follicular thyroid carcinoma (FTC) is based on the presence of capsular or vascular invasion. To date, no reliable and practical method has been introduced to discriminate this malignant neoplasm from follicular thyroid adenoma (FTA) in fine needle aspiration biopsy material. Matrix metalloproteinase-2 (MMP-2), by degrading extracellular matrix, and caspase-3, by induction of apoptosis, have been shown to play important roles in carcinogenesis and aggressive behavior in many tumor types. The aim of this study was to examine expression of MMP-2 and caspase-3 in thyroid follicular neoplasms and to determine their usefulness for differential diagnosis. Method: Sixty FTAs and 41 FTCs were analysed immunohistochemically for MMP-2 and caspase-3. Result: MMP-2 was positive in 4 FTCs (9.8%), but in none of FTAs, with statistical significance (p= 0.025). Caspase-3 was positive in 30 (50%) of FTAs and in 27 (65.9%) of FTCs. Conclusion: Our results show MMP-2 expression only in FTCs and suggest that this protein may be a useful marker to confirm diagnosis of FTC versus FTA with 100% specificity and 100% predictive value of a positive test. We failed to show any differential diagnostic value for caspase-3 in thyroid follicular neoplasms.

Morphology of Bone-like Apatite Formation on Sr and Si-doped Hydroxyapatite Surface of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation

  • Yu, Ji-Min;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.79-79
    • /
    • 2017
  • Metallic biomaterials have been mainly used for the fabrication of medical devices for the replacement of hard tissue such as artificial hip joints, bone plates, and dental implants. Because they are very reliable on the viewpoint of mechanical performance. This trend is expected to continue. Especially, Ti and Ti alloys are bioinert. So, they do not chemically bond to the bone, whereas they physically bond with bone tissue. For their poor surface biocompatibility, the surface of Ti alloys has to be modified to improve the surface osteoinductivity. Recently, ceramic-like coatings on titanium, produced by plasma electrolytic oxidation (PEO), have been developed with calciumand phosphorus-enriched surfaces. A lso included the influences of coatings, which can accelerate healing and cell integration, as well as improve tribological properties. However, the adhesions of these coatings to the Ti surface need to be improved for clinical use. Particularly Silicon (Si) has been found to be essential for normal bone, cartilage growth and development. This hydroxyapatite, modified with the inclusion of small concentrations of silicon has been demonstrating to improve the osteoblast proliferation and the bone extracellular matrix production. Strontium-containing hydroxyapatite (Sr-HA) was designed as a filling material to improve the biocompatibility of bone cement. In vitro, the presence of strontium in the coating enhances osteoblast activity and differentiation, whereas it inhibits osteoclast production and proliferation. The objective of this work was to study Morphology of bone-like apatite formation on Sr and Si-doped hydroxyapatite surface of Ti-6Al-4V alloy after plasma electrolytic oxidation. Anodized alloys was prepared at 270V~300V voltages with various concentrations of Si and Sr ions. Bone-like apatite formation was carried out in SBF solution. The morphology of PEO, phase and composition of oxide surface of Ti-6Al-4V alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Isolation of an Acinetobacter junii SY-01 Strain Producing an Extracellular Lipase Enantioselectively Hydrolyzing Itraconazole Precursor, and Some Properties of the Lipase

  • Yoon, Moon-Young;Shin, Pyong-Kyun;Han, Ye-Sun;Lee, So-Ha;Park, Jung-Keug;Cheong, Chan-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.97-104
    • /
    • 2004
  • Water-sludge bacteria were screened to find a lipase enantioselectively hydrolyzing itraconazole precursor, which is well known as the starting material of antifungal drug agents. A bacterial strain was isolated and identified as Acinetobacter junii SY-01. After the strain was cultivated, the enzyme was purified 39.4-fold using ultrafiltration and gel filtration through a Sephadex G-100 chromatographic column and the activity yield was 34.9%. The molecular weight of the enzyme was about 40 kDa, as measured by SDS-PAGE, and the optimum pH was 7.0- 9.0 and stable at pH 6.0- 9.0. The optimum temperature was 45- $5^{\circ}C$, and 73% of the enzymes activity remained after incubation at 70% for 1 h. Enzyme activity was enhanced by gall powder, sodium deoxycholate, a cationic detergent Tween 80, and a non-ionic detergent Triton X-100, but was markedly inhibited by metal ions such as $Hg^{2+},Cu^{2+},Ni^{2+}/,Ca^{2+}$, and an anionic-surfactant sodium dodecylsulfate. The $K_{m}$ values for (R)- and (S)-enantiomers of the itraconazole precursor were 0.385 and 21.83 mM, respectively, and the $V_{max} values ($\mu$Mㆍmin^{-1}.)$ were 6.73 and 6.49, respectively. The acetyl group among the different acyl moieties of itraconazole precursor showed the highest enantioselectivity for the hydrolysis by the Acinetobacter junii SY-01 lipase, and the lipase from Acinetobacter junii SY-01 displayed better enantioselectivity than that of commercially available lipases and esterases.

Novel Calcium Phosphate Glass for Hard-Tissue Regeneration

  • Lee, Yong-Keun;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • 제38권sup2호
    • /
    • pp.273-298
    • /
    • 2008
  • Purpose: The aim of this review is to introduce a novel bone-graft material for hard-tissue regeneration based on the calcium phosphate glass(CPG). Materials and Methods: CPG was synthesized by melting and subsequent quenching process in the system of CaO-$CaF_2-P_2O_5$-MgO-ZnO having a much lower Ca/P ratio than that of conventional calcium phosphates such as HA or TCP. The biodegradability and bioactivity were performed. Effects on the proliferation, calcification and mineralization of osteoblast-like cells were examined in vitro. Influence in new bone and cementum formations was investigated in vivo using calvarial defects of Sprague-Dawley rats as well as 1-wall intrabony defect of beagle dogs. The application to the tissue-engineered macroporous scaffold and in vitro and in vivo tests was explored. Results: The extent of dissolution decreased with increasing Ca/P ratio. Exposure to either simulated body fluid or fetal bovine serum caused precipitation on the surface. The calcification and mineralization of osteoblast-like cells were enhanced by CPG. CPG promoted new bone and cementum formation in the calvarial defect of Sprague-Dawley rats after 8 weeks. The macroporous scaffolds can be fabricated with $500{\sim}800{\mu}m$ of pore size and a three-dimensionally interconnected open pore system. The stem cells were seeded continuously proliferated in CPG scaffold. Extracellular matrix and the osteocalcin were observed at the $2^{nd}$ days and $4^{th}$ week. A significant difference in new bone and cementum formations was observed in vivo (p<0.05). Conclusion: The novel calcium phosphate glass may play an integral role as potential biomaterial for regeneration of new bone and cementum.

양극산화 처리된 타이타늄 표면에서 골형성 유전자 발현 (Osteogenic Gene Expression on Anodizing Titanium Surface)

  • 김원석;김영석;전성배;전상호;이의석;장현석;권종진;임재석
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제34권2호
    • /
    • pp.91-99
    • /
    • 2012
  • Purpose: The purpose of this study was to evaluate the expression of osteogenic genes associated with bone regeneration on anodizing titanium surface. Methods: $20{\times}20{\times}1$ (mm) commercially pure titanium plate was made, one group was pure titanium, second group was punched, and last group was punched and anodized by electrochemical method. Through the osteogenic cell culture model, the expression of extracellular matrix proteins, such as bone morphogenetic protein-2, bone sialoprotein, aggrecan, osteocalcin, Alkaline phosphatase, collagen I had been evaluated by Real-time polymerase chain reaction, and the morphology of growing cells was evaluated by scanning electron microscopy. Results: The attachment of mesenchymal stem cell was even and well-oriented on all Ti surfaces. The osteogene expression was increased on punching groups but, decreased on anodizing surfaces in 3 week samples. Conclusion: Punched anodizing Ti has possibility be using as a dental implant material, but further in vivo study would be needed.

Evaluation of Effective MMP Inhibitors from Eight Different Brown Algae in Human Fibrosarcoma HT1080 Cells

  • Bae, Min Joo;Karadeniz, Fatih;Ahn, Byul-Nim;Kong, Chang-Suk
    • Preventive Nutrition and Food Science
    • /
    • 제20권3호
    • /
    • pp.153-161
    • /
    • 2015
  • Matrix metalloproteinases (MMPs) are crucial extracellular matrices degrading enzymes that have important roles in metastasis of cancer progression as well as other significant conditions such as oxidative stress and hepatic fibrosis. Marine plants are on the rise for their potential to provide natural products that exhibit remarkable health benefits. In this context, brown algae species have been of much interest in the pharmaceutical field with reported instances of isolation of bioactive compounds against tumor growth and MMP activity. In this study, eight different brown algae species were harvested, and their extracts were compared in regard to their anti-MMP effects. According to gelatin zymography results, Ecklonia cava, Ecklonia bicyclis, and Ishige okamurae showed higher inhibitory effects than the other samples on MMP-2 and -9 activity at the concentrations of 10, 50, and $100{\mu}g/mL$. However, only I. okamurae was able to regulate the MMP activity through the expression of MMP and tissue inhibitor of MMP observed by mRNA levels. Overall, brown algae species showed to be good sources for anti-MMP agents, while I. okamurae needs to be further studied for its potential to yield pharmaceutical molecules that can regulate MMP-activity through cellular pathways as well as enzymatic inhibition.

Effect of Sambucus sieboldiana Extract on the Cell Growth and Extracellular Matrix Formation in Osteoblast Cells

  • Kim, Jeongsun;Cho, Seon-Ho;Park, Jong-Tae;Yu, Sun-Kyoung;Kim, Su-Gwan;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • 제39권2호
    • /
    • pp.121-128
    • /
    • 2014
  • Sambucus sieboldiana (SS) is a member of the family Caprifoliaceae and has been recommended as a functional material because of its several bioactivities. Although numerous literatures are available on the pharmacological and biological activities, the biological activity of SS in bone regeneration process has not yet been well-defined. Therefore, in this study, the effect of SS was investigated in the proliferation and differentiation of MC3T3-E1 osteoblastic cell line. The treatment of SS did not significantly affect the cell proliferation in MC3T3-E1 cells. SS significantly accelerated the mineralization and significantly increased the expression of alkaline phosphatase (ALP) and osteocalcin (OC) mRNAs, compared to the control, in the differentiation of MC3T3-E1 cells. SS significantly accelerated the decrease of osteonectin (ON) mRNA expression as compared with the control in a time-dependent manner in the differentiation of MC3T3-E1 cells. These results suggest that the SS facilitate the osteoblast differentiation and mineralization in MC3T3-E1 osteoblastic cells. Therefore, there may be potential properties for development and clinical application of bone regeneration materials.

The Processed Radish Extract Melanogenesis in Humans and Induces Anti-Photoaging Effects in Ultraviolet B-Induced Hairless Mouse Model

  • Kim, Hyun-Kyoung
    • International Journal of Advanced Culture Technology
    • /
    • 제7권4호
    • /
    • pp.125-136
    • /
    • 2019
  • The radish skin and radish greens are an edible part of the radish. But they are removed before eating the radish and used as a byproduct or an animal feed material because of their tough and rough texture. Melanin is a pigment that gives colour to our skin. But increased production of melanin can turn into benign or malignant tumours. These days due to global warming, the amount of Ultra violet (UVB) rays has been extensively increased with sunlight. Due to this, a phenomenon called exogenous photo aging is widely observed for all skin colour and types. As a result of this phenomenon, a set of enzymes called matrix metalloproteinases (MMP's) that serves as degradation enzymes for extracellular matrix proteins mainly collagen is increased, causing depletion in collagen and resulting in early wrinkles formation. Therefore in our study we used the murine melanoma cell line B16/F10 to study the melanogenesis inhibition by Heated radish extract (HRE) in vitro and we used HRM-2 hair less mice exposed to artificial UVB for checking the efficacy of Heated radish extract in vivo. Furthermore, we prepared a 3% Heated radish extract (HRE) cream and checked its effects on human skin. Our results have clearly demonstrated that Heated radish extract (HRE) have potently suppressed the tyrosinase activity and melanin production in B16/F10 cells. It had also reduced the expression of components involved in melanin production pathway both transcriptionally and transitionally. In in vivo studies, HRE had potently suppressed the expression of MMP's and reduced the wrinkle formation and inhibited collagen degradation. Moreover, on human skin, ginseng cream increased the resilience, skin moisture and enhanced the skin tone. Therefore in light of these findings, we conclude that HRE is an excellent skin whitening and antiaging product.

Penicillium Diversity from Intertidal Zone in Korea

  • Park, Myung Soo;Lee, Seobihn;Oh, Seung-Yoon;Lim, Young Woon
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2016년도 춘계학술대회 및 임시총회
    • /
    • pp.11-11
    • /
    • 2016
  • Penicillium species are commonly isolated from various outdoor and indoor environments, including marine environments such as sponges, algae and sand. Penicillium is especially important because numerous bioactive compounds have been isolated. Penicillium was the most common species in intertidal zone in Korea, however the diversity and ecological roles of Penicillium in intertidal zone are not clarified. We explored diversity and ecological roles of marine-derived Penicillium from tidal flat and sea sand in Korea. The diversity of marine-derived Penicillium from Korea was investigated using both culture-dependent and culture-independent approach by ${\beta}$-tubulin sequence. In addition, we evaluated optimal temperature, halo-tolerance, and enzyme activity of Penicillium strains, such as extracellular alginase, endoglucanase, ${\beta}$-glucosidase, and protease. For culture-dependent approach, a total of 182 strains of 62 Penicillium species were isolated, with 53 species being identified. The most common species was Penicillium oxalicum, followed by P. crustosum, P. brasilianum, P. koreense, and P. griseofulvum. Species richness and composition were not significantly different by season, substrates, and seaside. For culture-independent approach using Illumina sequencing, 73 OTUSs were detected. The most frequently observed species was P. antarcticum, followed by P. koreense, P. crustosum, and P. brevicompactum. Diversity of Penicillium was higher during winter season than during summer season and in western sea than in southern sea, respectively. Community structure was significantly different by season and sea side. 52 species were detected by both methods. Unique species were isolated from each of methods - 10 from culture methods and 21 from Illumina sequencing. Furthermore, salinity adaption of the Penicillium varied depending on species. Many Penicillium species showed endoglucanase, ${\beta}$-glucosidase, and protease activity. Some species including P. paneum and P. javanicum degraded the polycyclic aromatic hydrocarbons. Thus, our results demonstrate that intertidal zone in Korea harbors diverse Penicillium community and marine-derived Penicillium play important ecological roles as decomposers of organic material in marine environments.

  • PDF