• Title/Summary/Keyword: extracellular enzyme

Search Result 684, Processing Time 0.025 seconds

The Extracellular Enzyme Activities in Culture Broth of Tricholoma matsutake (송이균사(Tricholoma matsutake) 배양액의 세포외 효소 활성)

  • Lee, Chang-Yun;Hong, Oun-Pyo;Jung, Myung-Jun;Han, Yeong-Hwan
    • The Korean Journal of Mycology
    • /
    • v.26 no.4 s.87
    • /
    • pp.496-501
    • /
    • 1998
  • The mycelia of Tricholoma matsutake DGUM 26001, 26101, 26210 and FRI 91024 were used to determine the extracellular enzyme activity in mycelia. When the filtrate of culture broth after 30-day cultivation at $24^{\circ}C$ was used as a crude solution of extracellular enzyme, the average specific activity of ${\alpha}-amylase$ was 6142.3 unit/mg protein. The specific activity of xylanase was comparatively high. However, little or no enzyme activities were found for ${\beta}-glucosidase$, ligninase, CMCase, chitinase, protease, and lipase.

  • PDF

Characterization of a metalloprotease from an isolate Bacillus thuringiensis 29-126 in animal feces collected from a zoological garden in Japan

  • Lee, Eun Seok;Lee, Hyun Woo;Lee, Dong-Hyun;Kim, Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.4
    • /
    • pp.373-377
    • /
    • 2016
  • An extracellular metalloprotease, Btmp, was partially purified from the culture supernatant of Bacillus thuringiensis 29-126, isolated from animal feces collected in a zoological garden in Japan, by ultrafiltration, ammonium sulfate precipitation, and a set of chromatography on Sephadex G-75 and High-Q. The molecular mass of the protease was estimated to be 60 kDa by SDS-PAGE. The enzyme showed optimum activity at $50^{\circ}C$ and pH 6.0, and had a half-life of 14 min at $50^{\circ}C$. The enzyme activity was not influenced by $Na^+$, $K^+$, $As^+$, $Mg^{+2}$, $Ca^{2+}$, $Ba^{2+}$, and phenylmethylsulfonyl fluoride, but it was moderately inhibited by $Zn^{+2}$ at a concentration of 1.0 mM, while the activity was significantly inhibited to less than 50 % by $Cu^{2+}$, $Co^{2+}$, $Cd^{2+}$, and ethylenediaminetetraacetic acid. Interestingly, the enzyme was activated to 178 % by 1.0 mM of $Mn^{2+}$. From these results, it may be suggested that the protease is a novel extracellular manganeseactivated metalloprotease.

Purification and Characterization of an Extracellular Levansucrase from Zymomonas mobilis ZM1(ATCC 10988). (Zymomonas mobilis ZM1이 생산하는 균체외 Levansucrase의 정제 및 특성)

  • 송기방;서정우;주현규;이상기
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.309-315
    • /
    • 1998
  • An extracellular levansucrase, which catalyzes the formation of levan from sucrose, from the culture broth of Zymomonas mobilis ZM1 was purified by conventional column purification methods. The final purification yield was 18.3 fold of the crude enzyme from Z. mobilis, with 16.5 % of the enzyme recovered in the preparation step. The molecular weight of the enzyme was estimated to be 91,000 by Superose 12 gel filtration, and 45,000 by SDS-PAGE, indicating that levansucrase is a dimer. The optimum pH for the enzyme activity was around pH 4.0 for sucrose hydrolysis, and was around pH 5.0 for levan formation. The enzyme was inhibited by some metal ions, such as Hg$\^$2+/ and Cu2$\^$2+/, and 50% of inhibition was observed with 5mM EDTA. The enzyme activity was enhanced by the presence of detergent Triton X-100, but inhibited by SDS completely The enzyme catalyzes the liberation of reducing sugars, oligosacccharides and the formation of fructose polymer(levan). The enzyme also catalyzes the transfructosylation reaction of fructose moiety from sucrose to various sugar acceptor molecules, including sugar alcohols.

  • PDF

A simple screening method using lignoceullulose biodegradation for selecting effective breeding strains in Agaricus bisporus (리그노셀룰로오스 생물학적 분해를 이용한 간단한 양송이 육종효율 우수 균주 선발)

  • Oh, Youn-Lee;Nam, Youn-Keol;Jang, Kab-Yeul;Kong, Won-Sik;Oh, Min ji;Im, Ji-Hoon
    • Journal of Mushroom
    • /
    • v.15 no.3
    • /
    • pp.134-138
    • /
    • 2017
  • The white button mushroom, Agaricus bisporus, is commercially the fifth most important edible mushroom, accounting for the production of 9,732 tons of mushrooms in Korea in 2015. The genus Agaricus has been known for its potential to degrade lignocellulosic materials. Chemical analyses carried out during the cultivation of A. bisporus indicated that the cellulose, hemicellulose, and lignin fractions were changed preferentially for both vegetative growth and sexual reproduction. We screened A. bisporus strains for effective biodegradation through extracellular enzyme activity using cellulase, xylanase, and ligninolytic enzymes. The enzyme biodegradations were conducted as follows: mycelia of collected strains were incubated in 0.5% CMC-MMP (malt-mops-peptone), 0.5 Xylan-MMP, and 0.5% lignin-MMP media for 14 days. Incubated mycelia were stained with 0.2% trypan blue. Eighteen strains were divided into 8 groups based on different extracellular enzyme activity in MMP media. These strains were then incubated in sterilized compost and compost media for 20 days to identify correlations between mycelial growth in compost media and extracellular enzyme activity. In this study, the coefficient of determination was the highest between mycelial growth in compost media and ligninolytic enzyme activity. It is suggested that comparison with ligninolytic enzyme activity of the tested strains is a simple method of screening for rapid mycelial growth in compost to select good mother strains for the breeding of A. bisporus.

Purification and Characterization of Extracellular Temperature-Stable Serine Protease from Aeromonas hydrophila

  • Cho, Soo-Jin;Park, Jong-Ho;Park, Seong-Joo;Lim, Jong-Soon;Kim, Eung-Ho;Cho, Yeon-Jae;Shin, Kwang-Soo
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.207-211
    • /
    • 2003
  • Extracellular protease, from Aeromonas hydrophila Ni 39, was purified 16.7-fold to electrophoretic homogeneity with an overall yield of 19.9%, through a purification procedure of acetone precipitation, and Q Sepharose and Sephacryl S-200 chromatographies. The isoelectric point of the enzyme was 6.0 and the molecular mass, as determined by Sephacryl S-200 HR chromatography, was found to be about 102 kDa. SDS/PAGE revealed that the enzyme consisted of two subunits, with molecular masses of 65.9 kDa. Under standard assay conditions, the apparent $K_{m}$ value of the enzyme toward casein was 0.32 mg/ml. About 90% of the proteolytic activity remained after heating at 60$^{\circ}C$ for 30 min. The highest rate of azocasein hydrolysis for the enzyme was reached at 60$^{\circ}C$, and the optimum pH of the enzyme was 9.0. The enzyme was inhibited by the serine protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), by about 87.9%, but not by E64, EDTA, pepstatin or 1,10-phenanthroline. The enzyme activity was inhibited slightly by Ca$\^$2+/, Mg$\^$2+/ and Zn/supb 2+/ ions.

The Properties of Extracellular Guanine Deaminase from Pseudomonas synxantha A3 (Pseudomonas synxantha A3가 생산하는 세포외 Guanine Deaminase의 성질)

  • 전홍기;박정혜;이성태
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.6
    • /
    • pp.441-446
    • /
    • 1986
  • Some properties of extracellular guanine deaminase produced by Pseudomonas synxantha A3 were studied. The enzyme was stable at pH 6.5-7.5 and generally stable when it was incubated at 4$0^{\circ}C$ for 10 minutes but inactivated gradually above 4$0^{\circ}C$. When the enzyme in 0.2M potassium phosphate (pH 8.0) was stored at room temperature, it was stable for thirty days. Alcohols and acetone were not effective for the eyzyme stability. The optimum pH and temperature for the enzyme activity were around pH 7.0-8.0 and 5$0^{\circ}C$, respectively. The enzyme was inhibited by 1mM of Hg$^{++}$, Ag$^+$ and Li$^+$ and by 0.1mM of Ag$^+$ with about 50% loss of activity. The enzyme inhibited by Li$^+$ was reactivated by EDTA. 1 mM of pentachlorophenol and p-CMB inactivated the enzyme with 50% and 40% loss of activity, respectively. The enzyme inactivated by p-CMB was reactivated by glutathione.

  • PDF

Characterization of Extracellular Peroxidase from Pleurotus ostreatus (Pleurotus ostreatus에서 분비되는 Peroxidase의 특성)

  • 배성호;신광수;강사욱;하영칠;최선진;김규중;최형태
    • Korean Journal of Microbiology
    • /
    • v.27 no.4
    • /
    • pp.348-356
    • /
    • 1989
  • An extracellular peroxidase found in culture broth of Pleurotus ostreatus was induced by syringic acid. This enzyme was fractionated by DEAE Sephadex A-50 ion exchange chromatography and gel filtration chromatogrphy on Sephadex G-150. The enzyme is a glycoprotein containing 35.7% carbohydrate. The results of SDS-linear polyacrylamide gradient gel electrophoresis and gel filtration indicate that the enzyme is a dimer consisted of identical subunits (Mr=72,400). The absorption spectrum of the enzyme indicates the presence of one mole of iron protoporphyrin IX per one mole of subunit. Isoelectric point of the enzyme is 4.26 and $K_m$ values for $H_2O_2$ is $7.2{\mu}M$. The enzyme showed its optimal activity at pH 3.5-4.0 and at $40^{\circ}C$. The Km values of this enzyme for ferulic acid and sinapic acid are 2.4 and 12.3 times higher than those of horseradish peroxidase, respectively.

  • PDF

Production of the Extracellular Alkaline Proteinase by Yarrowia Lipolytica 504D (Yarrowia lipolytica 504D의 Extracellular Alkaline Proteinase 생산성)

  • 유춘발;김창화;김태곤
    • Journal of Life Science
    • /
    • v.8 no.3
    • /
    • pp.333-338
    • /
    • 1998
  • Productivity of alkaline proteinase from Yarrowia lipolytica 504D was investigated. For the production fo the enzyme, hemoglobin was the best nitogen source, however, casein and skim milk were also good. All carbon sources inhibited strongly the producitivity of the enzyme. Yeast extract increased the productivity of the enzyme to 220%, but almost mineral salts except monovalant ions decreased it. Based on these results, optimal medium was composed of 1.2% casein, 0.2% glucose, 0.16% yeast extract, and 0.1% ammonium sulfate. the best condition for the production of the enzyme was observed at pH 9 and $20^{\circ}C$ for 42 hours.

  • PDF

Purification and Characterization of $Co^{2+}-Activated$ Extracellular Metalloprotease from Bacillus sp. JH108

  • Jung, Hyun-Joo;Kim, Haek-Won;Kim, Jong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.861-869
    • /
    • 1999
  • An extracellular protease was purified to homogeneity from the culture supernatant of psychrotrophic bacteria Bacillus sp. JH 108 using procedures including ammonium sulfate fractionation, anion exchange chromatography, gel filtration chromatography, and cation exchange chromatography. The enzyme exhibited a molecular weight of 36 kDa, an optimum pH of 8 to 9, and optimum temperature of $60^{\circ}C$. The enzyme preferentially hydrolyzed leucine at the N-terminus of peptides and thus can be classified as an aminopeptidase. It was strongly inhibited by metal chelating agents such as EDTA and l, l0-phenanthroline. The activity lost by EDTA was restored with $Zn^{2+}{\;}or{\;}Co^{2+}$. These divalent cations also stimulated the native enzyme. This suggests that the enzyme is a metalloprotease acting as a leucine aminopeptidase.

  • PDF

Purification and Characterization of Extracellular Poly(3-hydroxybutyrate) Depolymerase from Penicillium simplicissimum LAR13

  • Han, Jee-Sun;Kim, Mal-Nam
    • Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.20-25
    • /
    • 2002
  • An extracellular PHB depolymerase was purified from P. simplicissimum LAR13 cultural medium by Sepharose CL-6B chromatography. When the fungus was grown in a basal salt medium with poly(3-hydroxybutyrate) (PHB) as the sole carbon source, PHB depolymerase production reached maximum at its stationary phase. The mycelial growth rate was higher at 37$^{\circ}C$ than at 30$^{\circ}C$ and even higher than at 25$^{\circ}C$, However, the enzyme production was lower at 37$^{\circ}C$ than 30$^{\circ}C$ or 25$^{\circ}C$. The isolated enzyme is composed of a single polypeptide chain with a molecular mass of about 36 kDa as determined by SDS-PAGE. The optimum conditions for the enzyme activity are pH 5.0 and 45$^{\circ}C$. The enzyme was stable for 30 min at a temperature lower than 50$^{\circ}C$, and stable at pH higher than 2.0 but it was unstable at pH 1.0.1 mM Fe$\^$2+/ reduced the enzyme activity by 56% and the enzyme was inhibited almost completely by 4 mM Fe$\^$2+/ . The enzyme was partially inhibited by phenylmethylsulfonyl fluoride and was very sensitive to diazo-DL-norleucine methyl esters dithiothreitol and mercuric ion. However, N-p - tosyl - L - Iysinechloromethyl ketone, p -hydroxymercuricbenzoate and N- acetylimidazole had no influence upon its activity.