• Title/Summary/Keyword: externally bonded

Search Result 117, Processing Time 0.021 seconds

Cyclic tests on RC joints retrofitted with pre-stressed steel strips and bonded steel plates

  • Yu, Yunlong;Yang, Yong;Xue, Yicong;Wang, Niannian;Liu, Yaping
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.675-684
    • /
    • 2020
  • An innovative retrofit method using pre-stressed steel strips and externally-bonded steel plates was presented in this paper. With the aim of exploring the seismic performance of the retrofitted RC interior joints, four 1/2-scale retrofitted joint specimens together with one control specimen were designed and subjected to constant axial compression and cyclic loading, with the main test parameters being the volume of steel strips and the existence of externally-bonded steel plates. The damage mechanism, force-displacement hysteretic response, force-displacement envelop curve, energy dissipation and displacement ductility ratio were analyzed to investigate the cyclic behavior of the retrofitted joints. The test results indicated that all the test specimens suffered a typical shear failure at the joint core, and the application of externally-bonded steel plates and that of pre-stressed steel strips could effectively increase the lateral capacity and deformability of the deficient RC interior joints, respectively. The best cyclic behavior could be found in the deficient RC interior joint retrofitted using both externally-bonded steel plates and pre-stressed steel strips due to the increased lateral capacity, displacement ductility and energy dissipation. Finally, based on the test results and the softened strut and tie model, a theoretical model for determining the shear capacity of the retrofitted specimens was proposed and validated.

Experimental study on effect of EBRIG shear strengthening method on the behavior of RC beams

  • Shomali, Amir;Mostofinejad, Davood;Esfahani, Mohammad Reza
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.145-154
    • /
    • 2019
  • The present experimental study addresses the structural response of reinforced concrete (RC) beams strengthened in shear. Thirteen RC beams were divided into four different sets to investigate the effect of transverse and longitudinal steel reinforcement ratios, concrete compressive strength change and orientation for installing carbon fiber-reinforced polymer (CFRP) laminates. Then, we employed a shear strengthening solution through externally bonded reinforcement in grooves (EBRIG) and externally bonded reinforcement (EBR) techniques. In this regard, rectangular beams of $200{\times}300{\times}2000mm$ dimensions were subjected to the 4-point static loading condition and their load-displacement curves, load-carrying capacity and ductility changes were compared. The results revealed that using EBRIG method, the gain percentage augmented with the increase in the longitudinal reinforcement ratio. Also, in the RC beams with stirrups, the gain in shear strength decreased as transverse reinforcement ratio increased. The results also revealed that the shear resistance obtained by the experimental tests were in acceptable agreement with the design equations. Besides, the results of this research indicated that using the EBRIG system through vertical grooves in RC beams with and without stirrups caused the energy absorption to increase about 85% and 97%, respectively, relative to the control.

Strengthening method using externally-bonded steel frames for promoting the seismic performance of existing buildings (기존 건축물 내진성능 향상을 위한 철골 골조 외부부착 보강공법)

  • Mauk, Ji-Wook;Park, Young-Mi;Park, Ki-Hong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.98-99
    • /
    • 2018
  • Seismic retrofitting technologies have been paid attention to structural engineers for rehabilitations of existing building structures vulnerable to seismic loading conditions. This paper introduces the traditional strengtheing method applying externally-bonded steel frames to column and beam elements, and compares with the improved scheme using the frames with additional energy dissipation systems. Throughout experimental studies, it was observed that the method can be effective for promoting the seismic performance of seismic force-resisting systems by guaranteeing strong column-weak beam mechanism. Compared to the traditional manner, it was found that the new scheme can be more efficient for confirming capacity design concept, while energy dissipation systems can provide additional damping effects corresponding to lateral deformation which occurs at seismic force-resisting systems exposed to seismic excitations.

  • PDF

Structural Performance of Strengthened Reinforced Concrete Slabs with Simple Supports (보강된 단순지지 철근 콘크리트 슬래브의 구조 성능)

  • Shin, Young-Soo;Lee, Cha-Don;Hong, Gi-Suop;Choi, Oan-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.1
    • /
    • pp.89-96
    • /
    • 1997
  • The paper presents the results of experimental studies on two strengthening methods for reinforced concrete (RC) slabs. Bending tests on RC slabs have been carried out to investigate the influence of the increased thickness and externally bonded carbon fiber sheets. The interfaces of new and old concrete of increased thickness specimens have been chipped and treated with bonding agent. The conclusions have been reached as followings. (1) The behavior of specimens with chipped interface is good enough to calculate flexural strength of RC slabs for increased depth. (2) The flexural stiffness of increased depth specimen is severely increased and the deformation of RC slabs is controled. (3) The specimens with externally bonded carbon fiber sheets can be assumed to behave monolithically.

  • PDF

Study on behavior of RCC beams with externally bonded FRP members in flexure

  • Sumathi, A.;Arun Vignesh, S.
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.625-638
    • /
    • 2017
  • The flexural behavior of Fiber reinforced polymer (FRP) sheets has gained much research interest in the flexural strengthening of reinforced concrete beams. The study on flexure includes various parameters like increase in strength of the member due to the externally bonded (EB) Fiber reinforced polymer, crack patterns, debonding of the fiber from the structure, scaling, convenience of using the fibers, cost effectiveness, etc. The present work aims to study experimentally about the reasons behind the failure due to flexure of an externally bonded FRP concrete beam. In the design of FRP-reinforced concrete structures, deflection control is as critical as much as flexural strength. A numerical model is created using Finite element (FEM) software and the results are compared with that of the experiment.

Flexural Behavior of RC beams Strengthened with Externally Bonded Prestressed CFRP Strips (외부 부착형 프리스트레스트 탄소섬유판으로 보강된 RC보의 휨 거동)

  • You Young Chan;Choi Ki Sun;Park Young-Hwan;Park Jong-Sup;Kim Keung Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.255-258
    • /
    • 2005
  • Experimental study has been performed in order to investigate the behavior of RC beams strengthened with externally bonded prestressed CFRP (Carbon Fiber Reinforced Polymer) strips. A total of 7 specimens have been manufactured of which specimens strengthened with bonded CFRP strips considering the level of prestress as experimental variable, and a specimen with simply bonded CFRP strips. The following phenomena have been observed through the experimental results. The specimen with simply bonded CFRP strips failed below 50$\%$ of its tensile strength due to premature debonding. On the other hand, all the specimens strengthened with prestressed CFRP strips showed sufficient strengthening performance up to the ultimate rupture load of the CFRP strips. Also, it was observed that the cracking loads and yield loads of the strengthened beams were increased proportionally to the prestress level, but the maximum loads were nearly equal regardless of the prestress level.

  • PDF

Investigation of the effects of connectors to enhance bond strength of externally bonded steel plates and CFRP laminates with concrete

  • Jabbar, Ali Sami Abdul;Alam, Md Ashraful;Mustapha, Kamal Nasharuddin
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1275-1303
    • /
    • 2016
  • Steel plates and carbon-fiber-reinforced polymer (CFRP) laminates or plates bonded to concrete substrates have been widely used for concrete strengthening. However, this technique cause plate debonding, which makes the strengthening system inefficient. The main objective of this study is to enhance the bond strength of externally bonded steel plates and CFRP laminates to the concrete surface by proposing new embedded adhesive and steel connectors. The effects of these new embedded connectors were investigated through the tests on 36 prism specimens. Parameters such as interfacial shear stress, fracture energy and the maximum strains in plates were also determined in this study and compared with the maximum value of debonding stresses using a relevant failure criterion by means of pullout test. The study indicates that the interfacial bond strength between the externally bonded plates and concrete can be increased remarkably by using these connectors. The investigation verifies that steel connectors increase the shear bond strength by 48% compared to 38% for the adhesive connectors. Thus, steel connectors are more effective than adhesive connectors in increasing shear bond strength. Results also show that the use of double connectors significantly increases interfacial shear stress and decrease debonding failure. Finally, a new proposed formula is modified to predict the maximum bond strength of steel plates and CFRP laminates adhesively glued to concrete in the presence of the embedded connectors.

Prediction of Bonding Failure Load of RC Beams Strengthened by Externally Bonded Steel Plates (강판으로 보강된 RC보의 부착파괴하중 예측)

  • 박윤재;신동혁;이광명;신현목
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.729-732
    • /
    • 1999
  • In this paper, the Mohr-Coulomb criterion was adopted to predict the bonding failure load of the reinforced concrete beams strengthened by the externally bonded steel plates. Based on this criterion, a nonlinear analysis program of APSB(Analysis Program for Strengthened Beams) and nonlinear finite element analysis program of RCSD-SB (Reinforced Concrete Structural Design - Strengthened Beams) were developed. Numerical results were then compared with experimental results and good agreements were obtained.

  • PDF

Post-tensioning System with Externally Bonded CFRP Strips for Strengthening RC Members (RC 부재의 휨 보강을 위한 외부 부착형 탄소섬유판 포스트텐션 시스템)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.155-163
    • /
    • 2008
  • Experimental study has been performed in order to investigate the behavior of RC beams strengthened with externally bonded post-tensioned CFRP (Carbon Fiber Reinforced Polymer) strips. Specimens consist of 9 small-scaled specimens with the different post-tensioning level as a main test parameter. A control specimen and specimens with simply bonded CFRP strips have been manufactured to compare the structural performances of prestressed system. From the test results, it was observed that the specimens strengthened with simply bonded CFRP strips showed debonding failure below 50% of CFRP tensile strength due to premature debonding. On the other hand, all the specimens strengthened with post- tensioned CFRP strips reached the rupture strength of the CFRP strip. The cracking and yielding loads were also increased proportionally to the post-tensioning level, but the ultimate loads were nearly equal regardless of the post-tensioning level.

Analyze of the interfacial stress in reinforced concrete beams strengthened with externally bonded CFRP plate

  • Hadji, Lazreg;Daouadji, T. Hassaine;Meziane, M. Ait Amar;Bedia, E.A. Adda
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.413-429
    • /
    • 2016
  • A theoretical method to predict the interfacial stresses in the adhesive layer of reinforced concrete beams strengthened with externally bonded carbon fiber-reinforced polymer (CFRP) plate is presented. The analysis provides efficient calculations for both shear and normal interfacial stresses in reinforced concrete beams strengthened with composite plates, and accounts for various effects of Poisson's ratio and Young's modulus of adhesive. Such interfacial stresses play a fundamental role in the mechanics of plated beams, because they can produce a sudden and premature failure. The analysis is based on equilibrium and deformations compatibility approach developed by Tounsi. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the reinforced concrete beam and bonded plate. The paper is concluded with a summary and recommendations for the design of the strengthened beam.