• Title/Summary/Keyword: external weather data

Search Result 64, Processing Time 0.023 seconds

Prediction of Depth of Concrete Carbonation According to Microenvironmental Conditions (미세 환경조건에 따른 콘크리트 탄산화 깊이 예측)

  • Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.158-159
    • /
    • 2021
  • When the porous concrete is exposed to the external environment, the internal relative humidity changes from time to time due to the inflow and outflow of moisture. This change in moisture is affected by temperature. The temperature and humidity of concrete is dominant in the carbonation rate, the largest cause of deterioration of concrete. In this study, actual weather data were used as boundary conditions. A carbonization model of concrete temperature and humidity and calcium hydroxide was constructed to perform long-term analysis. There is a slight error in the carbonation formula of the Japanese Academy of Architecture applying the Kishtani coefficient, a representative experimental formula related to carbonization, and the analysis result values. However, considering that it behaves very similarly, it is thought that a fairly reliable numerical analysis model has been established. A slight error is believed to be due to the fact that the amount of residual calcium hydroxide in the carbonated site has not yet been clearly identified.

  • PDF

A Design of Temperature Management System for Preventing High Temperature Failures on Mobility Dedicated Storage (모빌리티 전용 저장장치의 고온 고장 방지를 위한 온도 관리 시스템 설계)

  • Hyun-Seob Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.125-130
    • /
    • 2024
  • With the rapid growth of mobility technology, the industrial sector is demanding storage devices that can reliably process data from various equipment and sensors in vehicles. NAND flash memory is being utilized as a storage device in mobility environments because it has the advantages of low power and fast data processing speed as well as strong external shock resistance. However, flash memory is characterized by data corruption due to long-term exposure to high temperatures. Therefore, a dedicated system for temperature management is required in mobility environments where high temperature exposure due to weather or external heat sources such as solar radiation is frequent. This paper designs a dedicated temperature management system for managing storage device temperature in a mobility environment. The designed temperature management system is a hybrid of traditional air cooling and water cooling technologies. The cooling method is designed to operate adaptively according to the temperature of the storage device, and it is designed not to operate when the temperature step is low to improve energy efficiency. Finally, experiments were conducted to analyze the temperature difference between each cooling method and different heat dissipation materials, proving that the temperature management policy is effective in maintaining performance.

Calibration System for Three-Cup Anemometers (현장용 교정 장치를 이용한 3-컵 풍속계의 교정 방법)

  • Chun, Se-Jong;Lee, Saeng-Hee;Choi, Yong-Moon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.325-331
    • /
    • 2010
  • Three-cup anemometers are popular devices for measuring wind speeds in automated weather stations, environmental monitoring systems, and wind turbines. Cup anemometers usually suffer from lack of long-term stability owing to the wear of the bearing systems that support the rotational parts. The bearing systems are susceptible to external pollutants, vibrations, and gusts. Therefore, these anemometers have to be calibrated regularly to maintain the desired characteristics for measuring wind speed. In the present study, a new in-situ calibration system to help reduce cost and save time by calibrating the cup anemometers at the installation site is proposed. A portable in-situ calibrator was fabricated. After the characteristics of this calibrator were verified, it was used to calibrate cup anemometers. Some of the calibration results were compared with the data obtained by wind tunnel testing.

An Integrated Flood Simulation System for Upstream and Downstream of the Agricultural Reservoir Watershed (농촌 유역 저수지 상·하류 통합 홍수 모의 시스템 구축 및 적용)

  • Kwak, Jihye;Kim, Jihye;Lee, Hyunji;Lee, Junhyuk;Cho, Jaepil;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.41-49
    • /
    • 2023
  • To utilize the hydraulic and hydrological models when simulating floods in agricultural watersheds, it is necessary to consider agricultural reservoirs, farmland, and farmland drainage system, which are characteristics of agricultural watersheds. However, most of them are developed individually by different researchers, also, each model has a different simulation scope, so it is hard to use them integrally. As a result, there is a need to link each hydraulic and hydrological model. Therefore, this study established an integrated flood simulation system for the comprehensive flood simulation of agricultural reservoir watersheds. The system can be applied easily to various watersheds because historical weather data and the SSP (Shared Socio-economic Pathways) climate change scenario database of ninety weather stations were built-in. Individual hydraulic and hydrological models were coded and coupled through Python. The system consists of multiplicative random cascade model, Clark unit hydrograph model, frequency analysis model, HEC-5 (Hydrologic Engineering Center-5), HEC-RAS (Hydrologic Engineering Center-River Analysis System), and farmland drainage simulation model. In the case of external models with limitations in conceptualization, such as HEC-5 and HEC-RAS, the python interpreter approaches the operating system and gives commands to run the models. All models except two are built based on the logical concept.

The Development of the Anchor Dragging Risk Assessment Program (선박 주묘 위험성 판별 프로그램 개발에 관한 연구)

  • Kim, Joo-Sung;Park, Jun-Mo;Jung, Chang-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.646-653
    • /
    • 2018
  • Marine accidents caused by dragging anchors occur constantly due to enlargement of ships' size and unusual weather conditions. Nevertheless, vessel operators rely on their experience because the calculations of actual holding power and external forces are complex and inconvenient. The purpose of this study was to propose a program for the anchor dragging risk assessment in order to provide crew and VTSO with the information to determine easily the danger of dragging and take appropriate action. The input data in this program were composed of the ship's basic particulars, anchoring condition, and external environment etc. on calculating for the wind pressure, frictional force, drift force, and holding power. Three dragging anchor accidents were applied to the program's data input at the time of the day, then the result was assessed by 'warning', which was verified with a high confidence. As a result, the risk of dragging anchors can be predicted in advance through this program. In further studies, it is necessary to simplify the input data and improve user convenience through automatic input from various equipment.

An Analysis of Façade Panel Characteristics of UN Studio's Office Projects (유엔스튜디오 업무시설 외피 패널의 형태적 특성 분석)

  • Ko, Sung Hak
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.8
    • /
    • pp.23-34
    • /
    • 2019
  • The façade, a fundamental function as a skin that protects human life from external environment such as cold and hot weather, snow, rain, and wind, etc, has served as a media for communication between indoor space of the building and outside space. From the media for communication point of view, the approach to envelope design, in which environmental elements are transmitted internally through the filtering of external environments, has been evolving in various ways from the past to the present. Today, modern architecture technologies including curtain wall systems and user-friendly computer programming and environmental analysis programs demonstrate a differentiated approach to envelope design related to the indoor environment. For this reason, it is worth noting that the envelope design factors and trends that appear variously in the UNStudio's projects before and after the 2000s. The factors reflected in the envelop design in conjunction with the indoor environment obtained through the case study of the UNStudio's office projects were daylight environment, thermal environment, ventilation, noise, privacy and view, and consideration for daylight environment and thermal environment was reflected in many cases through the case study. Looking at the changes in the diagrams in order of year, it can be seen that the envelope design using the environmental analysis tool has been performed since 2006. This is a clue to show the envelop design changes from the conceptual method to the data-based one. The diagrams and analysis results related to the envelop design showed that the thermal environment related to solar radiation was the most, and no diagrams and analysis related to the indoor illumination were found. Since 2010, PV panel installation has been shown in the envelope design, which can be found in the increased efficiency of PV panels due to the technological advances and the decrease in production cost.

The Implementation of Sign Board Receiving DARC for Vehicle (차량용 FM 부가 방송 수신 전광판의 구현)

  • 김남두;최재석;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.560-565
    • /
    • 2002
  • In this paper, we implemented the sign board system that displays user's image, user's sentence, the information from DARC an[1 information based position by GPS module for vehicle. The existing sign board is displaying only user's image and sentence. Or other existing sign board is displaying the information via CDMA network. However, our system is also able to display the user's message like other system and gain the information more cheap by DARC. This system consists of 6 parts. The DARC control part classes the DARC information - news, weather, stock and time. The GPS control part gains moment and item to display with calculating the information of global position, direction, speed and satellite. The LED control part has two buffers to store and handle the image. The buffers help the system display various effected images on LED board. An external memory card includes the location based data, the option file and the displayed data files. The data files are stored by FAT 16 with the folder structure on external memory card. The USB controls the communication with PC. PC programs can control and monitor this system. This system is using G72l voice file format, for casting the information. This system was established at the vehicle and we monitored this system. The system displayed the DARC data , user's data and the location based data on the LED board, successfully.

  • PDF

The annual infiltration distribution caused by wind and stack effects in high-rise residential buildings (외부바람과 연돌효과의 상호작용에 의한 고층주거 건물의 연간 침기량 분포)

  • Park, Ju-Hyun;Yoon, sung-min;Song, Du-Sam;Kim, Yong-Sik
    • Journal of Urban Science
    • /
    • v.8 no.1
    • /
    • pp.25-31
    • /
    • 2019
  • Infiltration affects indoor environmental and air quality and energy consumptions in buildings. Especially, airflow and the infiltration are more remarkable in high-rise buildings due to the air-driving forces (stack and wind effects). Thus, it is important to understand infiltration distributions in high-rise residential buildings. In this study, the weather-driven infiltration is characterized from the viewpoint of interactions between external wind and stack effect in high-rise residential buildings. To calculate accurately the annual infiltration distributions, this study also suggests an airflow and thermal simulation method with a two-step calibration of air-leakage data. The simulated results show (1) how the interaction between stack and wind effects induce infiltration types (outdoor and interzone air infiltration) and (2) how much the interzone air infiltration (being ignored in previous studies) occurs due to the stack effect, as well as the outdoor air infiltration rates.

Evaluation on Calculation Algorithms for Polycrystalline Silicon PV Module Surface Temperatures by Varying External Factors during the Summer Period (다결정 실리콘 PV모듈의 하절기 표면온도 예측을 위한 알고리즘 검토 및 외부인자별 영향 평가)

  • Jung, Dong-Eun;Yeom, Gyuhwan;Lee, Chanuk;Do, Sung-Lok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.177-184
    • /
    • 2019
  • Recently, electric power usages and peak loads from buildings are increasing due to higher outdoor air temperatures and/or abnormal climate during the summer period. As one of the eco-friendly measures, a renewable energy system has been received much attention. Particularly, interest on a photovoltaic (PV) system using solar energy has been rapidly increasing in a building sector due to its broad applicability. In using the PV system, one of important factors is the PV efficiency. The normal PV efficiency is determined based on the STC(Standard Test Condition) and the NOCT(Nominal Operating Cell Temperature) performance test. However, the actual PV efficiency is affected by the temperature change at the module surface. Especially, higher module temperatures generally reduce the PV efficiency, and it leads to less power generation from the PV system. Therefore, the analysis of the relation between the module temperature and PV efficiency is required to evaluate the PV performance during the summer period. This study investigates existing algorithms for calculating module surface temperatures and analyzes resultant errors with the algorithms by comparing the measured module temperatures.

A Study on the Solar Water Heating System in the Military Facilities (병영시설의 태양열급탕시스템에 관한 연구)

  • Kim, Doo-Chun;Seo, Jin-Seok
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.11 no.4
    • /
    • pp.6-18
    • /
    • 1982
  • The performance of two typical types of solar hot water heating system was tested in Seoul. Types of systems studied are single-tank internal external heat exchanger system and single-tank internal heat exchanger system. Comparing to experimental results, a transient system simulation program was made to analyze the performance of the selected system. The climate data, Standard Weather Year for Seoul, required for the simulation was provided. Computer simulations were used to estimate the effect of significant parameters upon system performance. The followings are obtained. 1. In the domestic solar water Heating system, the value $20-40kg/m^2\;h$ for flow rate through the collector is much better than the recommended value $72kg/m^2\;h$ in the solar heating system. 2. The effectiveness of collector heat exchanger and storage tank size are found to have only a small effect upon system performance. 3. The hot water draw pattern has a significant effect on system performance. A higher system efficiency achieved when draw-off occurred around noon than when it occurred around early morning. Using the above results, the reference solar hot water system which provides $300\ell$ of hot water per day, was selected as a guide for designer. And simplified graphical method was developed based on the modified f-chart method to determine required collector area. When the system design parameters of the proposed system differs from the reference system, required collector area can be calculated from area adjustment factors.

  • PDF