• Title/Summary/Keyword: external post-tensioning

Search Result 33, Processing Time 0.037 seconds

Strengthening Design by External Pre-tensioning and Post-tensioning Methods for Steel-concrete Composite Girders using Rating Factor (내하율을 이용한 강합성보의 외부 프리텐션과 포스트텐션 보강 설계)

  • Choi, Dong-Ho;Yoo, Dong-Min;Jeong, Gu-Sang;Park, Kyung-Boo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.123-134
    • /
    • 2007
  • A method to determine the initial force of external tendon is proposed to improve the load carrying capacity in existing steel-concrete composite bridges. This method is applied to tensioning external tendons prior to and after concrete replacement for strengthening composite girders. A procedure to determine the number of tendon and initial tendon force is described with the proposed rating factor, which considers the increment of tendon force due to live loads. The method is applied to the improvement of rating factor in an existing composite bridge and its validity is confirmed.

A study on Strengthening and Rehabilitation of Concrete girder bridge using Multi-Stepwise Thermal Prestressing Method (온도프리스트레싱 공법을 이용한 콘크리트교량의 보수보강에 관한 연구)

  • Kim, Sang-Hyo;Ahn, Jin-Hee;Kim, Jun-Hwan;Lee, Sang-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.238-241
    • /
    • 2006
  • The needs for strengthening and rehabilitation of the concrete bridges are a growing concern in many countries and has been emphasized in various researches and papers. Traditional external post-tensioning method using either steel bars or tendons is commonly used as a strengthening method. However, the method has some disadvantages such as stress concentration at the anchorages. Multi-stepwise thermal prestressing method is a newly proposed method for strengthening and rehabilitation of concrete girder bridges. Founded on a simple concept of thermal expansion and contraction of steel, the method is a hybrid method of external post-tensioning and steel plate bonding, combining the merits of two methods. In this paper, basic concepts on strengthening and rehabilitation of concrete girder are presented and an illustrative experiment is introduced.

  • PDF

Design Procedure of Stress Ribbon Pedestrian Bridges (스트레스 리본 보도교의 설계절차)

  • Han, Ki-Jang;Choi, Young-Goo;Park, Kyoung-Yong;Kim, Kee-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2474-2480
    • /
    • 2013
  • A stress ribbon pedestrian bridge is the structure in which the axial force of prestressed deck, which is developed by introducing prestressed force into the thin deck with the very low value of span to deck-depth ratio which is installed on bearing cables with the specified sag, resists most of external loadings. Since the design of stress ribbon pedestrian bridges should be conducted by assuming the cross-section of deck, the area of bearing cables and post-tensioning cables, and the prestressed force of post-tensioning cables, it requires much more iterative processes than the design of general bridges. In this research, to minimize such iteration processes, regression equations which can reasonably assume the area of bearing cables and post-tensioning cables, and the prestressed force of post-tensioning cables, are suggested for the bridge length of 80m with the sag-span ratios of 1/30, 1/40, and 1/50.

Flexural Behavior Characteristics of Steel I-Beam Strengthened by the Post-tensioning Method on the Field Experiment (현장실험을 통한 외부 후긴장 Steel I-Beam의 휨 거동 특성)

  • Cho, Doo-Yong;Park, Dae-Yul;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.151-158
    • /
    • 2002
  • Recently, the externally prestressed unbonded steel I-beam bridges have been increasingly built. The mechanical behavior of prestressed steel I-beams which are with external unbonded tendon is different from that of normal bonded PSC beams in a point of that the slip of tendons at deviators and the change of tendon eccentricity occurs, when external loads are applied in external unbonded steel I-beams. The concept of prestressing steel structures has not been widely considered, in spite of long and successful history of prestressing concrete members. In this study, The field experiment on prestressed steel I-beams has been performed in the various aspects of prestressed I-beam including the tend on type and profile.

An Experimental Study on Flexural Behavior of Continuous Prestressed Steel I-Girder with Section Increasement at Internal Supports (지점부 단면형고 확대를 도입한 연속 프리스트레스트 Steel I-Girder의 휨거동에 관한 실험적 연구)

  • Kim, Kyung-Min;Hong, Sung-Nam;Yang, Dong-Suk;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.143-153
    • /
    • 2006
  • The paper presents the results of a study on improvement in flexure capacities of continuous prestressed steel I-girder with section increasement at internal supports. After tensioning, the field experiment on prestressed steel I-girder has been performed in the various aspects of prestressed I-girder introducing section increasement at internal supports, tendon profile.

Nonlinear Analysis using ABAQUS Software of Reinforced Concrete (RC) Beams Strengthened with Externally Post-tensioning Steel Rods (외적 포스트텐셔닝 강봉으로 보강된 철근콘크리트 보의 ABAQUS를 이용한 비선형해석)

  • Lee, Swoo-Heon;Shin, Kyung-Jae;Kim, Jin-Wook;Lee, Hee-Du
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.11-17
    • /
    • 2018
  • Concrete is the well-used material in many architectural and civil structures. The behavior of concrete does exhibit a different characteristic in compression and tension, and it also shows an inelastic-nonlinear behavior. In addition, the concrete properties vary slightly depending on the environmental factor and manufacturer. These properties of concrete make the modeling or simulation of concrete material difficult. In reinforced concrete, particularly, there is a difficulty in bond-slip relationship between concrete and steel. However, in this paper, reserving remainder of these limits the finite element analysis for reinforced concrete beams through ABAQUS simulation has been carried out with some assumptions. Assumptions include the perfect bond of steel and concrete as well as the concrete damaged plasticity (CDP) in concrete property. There is a reasonable agreement between the experimental and numerical results, although the analytical strength and external rod deformation are slightly overestimated. The average and standard deviation between two results are 1.05 and 0.05, respectively. And the models and the computations lead to the evolution of fracture in bending beam.

A Study on Strengthening of Steel Girder Bridge using Multi-Stepwise Thermal Prestressing Method (다단계 온도프리스트레싱을 이용한 강거더교의 보강에 관한 연구)

  • Kim, Sang Hyo;Kim, Jun Hwan;Ahn, Jin Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.717-726
    • /
    • 2006
  • Traditional external post-tensioning method using either steel bars or tendons is commonly used as a retrofitting method for steel composite bridges. However, the method has some disadvantages such as stress concentration at anchorages and inefficient load-carrying capability of live loads. Multi-stepwise prestressing method using thermal expanded coverplate is a newly proposed prestressing method, which was originally developed for prestressing steel structures. A new retrofitting method for steel girder bridges founded on a simple concept of thermal expansion and contraction of cover plate, the method is a hybrid of and combines the advantages of external post-tensioning and thermal prestressing. In this paper, basic concepts of the method are presented and an illustrative experiment is introduced. From actual experimental data, the thermal prestressing effect was substantiated and the FEM approach for its analysis was verified. The retrofitting effects ofa single-span bridge were analyzed and the feasibility of the developed method was examined.

Effects of Post-Tensioning Tendons and Vehicle Speeds on Dynamic Response of Concrete-Filled Steel Tubular Tied Arch Girder (긴장재 및 차량속도 변화에 따른 콘크리트 충전 타이드 아치형 거더의 동적거동)

  • Roh, Hwasung;Hong, Sanghyun;Park, Kyunghoon;Lee, Jong Seh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.163-172
    • /
    • 2011
  • The CFTA girder developed is a concrete filled steel tubular system with arched shape and external post-tensioning (PT) tendons which control the initial camber and the bending stress of the girder. In the present study the effects of the PT tendons on the dynamic behavior of the girder subjected to a moving vehicle load are numerically investigated. Various levels for the tendon quantity and the tendon forces are considered, using the existing FE model of the girder. The vehicle considered is a DB-24 truck and is modeled with two tracks-three axles. Equivalent-load pulse time histories are applied to each node to simulate the moving vehicle, depending on the time of arrival and the discretization. The vehicle speeds are varied from 40 km/hr to 100 km/hr with increment of 20 km/hr. The analysis results show that the tendon forces do not produce any influences on the dynamic responses of the girder. However the dymamic deflection of the girder increases when a smaller amount of tendons is used. The Dynamic Amplification Factors (DAF) are evaluated based on the static and dynamic responses. Much lower values of the DAF are obtained, even no tendons applied, than those provided by the design criteria of the AASHTO LRFD and the Korea Highway Standard Specification.

Analysis of PSC Beam Bridges Strengthened by External Post-Tensioning Method (외부 후긴장된 PSC보 교량의 해석방법)

  • 김광수;박선규;김형열;전찬기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.399-404
    • /
    • 1999
  • An improved finite element modeling technique is proposed for the assessment of load carrying capacity partilly prestressed concrete beam bridges. Based on the finite element method of analysis, shell and frame elements are utilized to model the slab and beams of the superstructure, respectively. In the modeling of superstructure, the emphasis is placed on the use of rigid link between the middle surface of slab and mid-plane of beam. This paper also includes the comparision of three different equations that used in the calculation of effective moment of inertia for the partially prestressed concrete beams. Numerical analysis is performed for the unstrengthened and strengthened bridges. The obtained results are compared with those of load test for a prototype bridge. Agreement with the numerical solutions by using the proposed method and load test results is generally excellent.

  • PDF