• Title/Summary/Keyword: external materials

Search Result 1,894, Processing Time 0.028 seconds

Description of reversed yielding in thin hollow discs subject to external pressure

  • Alexandrov, Sergei E.;Pirumov, Alexander R.;Jeng, Yeau-Ren
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.661-676
    • /
    • 2016
  • This paper presents an elastic/plastic model that neglects strain hardening during loading, but accounts for the Bauschinger effect. These mathematical features of the model represent reasonably well the actual behavior of several materials such as high strength steels. Previous attempts to describe the behavior of this kind of materials have been restricted to a class of boundary value problems in which the state of stress in the plastic region is completely controlled by the yield stress in tension or torsion. In particular, the yield stress is supposed to be constant during loading and the forward plastic strain reduces the yield stress to be used to describe reversed yielding. The new model generalizes this approach on plane stress problems assuming that the material obeys the von Mises yield criterion during loading. Then, the model is adopted to describe reversed yielding in thin hollow discs subject to external pressure.

Design of RFID Packaging for Construction Materials (건축자재용 RFID 패키징 설계)

  • Shin, Jae-Hui;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.6
    • /
    • pp.923-931
    • /
    • 2013
  • RFID (Radio Frequency Identification), which is a kind of the electronic tag, is a wireless access device using the radio frequency for recognizing the ID information. It has a variety of application such as the bus card, gate access card, distribution industry, and management of construction materials. The performance and size of RFID depend on the penetrability, recognition ratio, memory size, multi tag recognition, external pollution dust, and exterior impact, and RFID requires the packaging to protect itself considered above factors. Recently, RFID is diversely employed to effectively manage construction materials and the RFID packaging, which is robust to the external impact, is required to attach RFID on construction materials. In this paper, we propose the construction material RFID packaging designed to be robust for the external impact and to be practicable for change of the broken RFID. For the change of RFID, we separate the cast and body of the packaging. Also, we present the detail drawing for the proposed construction material RFID packaging and implement the performance evaluation of the packaging manufactured using 3D printer.

Continuous Half Passive Motion under Distracted External Fixation for the Treatment of Distal Tibial Pilon Fractures (신연 외고정 및 지속적 반수동 운동을 이용한 경골 원위부 필론 골절의 치료)

  • Bae, Su-Young;Chung, Hyung-Jin;Shin, Yong-Woon;Park, Jae-Gu
    • Journal of Korean Foot and Ankle Society
    • /
    • v.14 no.2
    • /
    • pp.146-150
    • /
    • 2010
  • Purpose: Pilon fracture has several serious complications such as joint stiffness, arthrosis and delayed angular deformity. We report short-term results of new treatment modality using distracted dynamic external fixators and early controlled ankle motion. Materials and Methods: Eight cases of severe pilon fractures for which we tried small plate fixation and additional distracted dynamic external fixators from July 2007 to June 2009 were included. Half passive continuous ankle joint motion was allowed under free hinged ring fixators after the operation. The external fixators were removed after two or three months from the surgery. We investigated joint space by radiograph, joint pain, range of motion, patient's satisfaction of treatment protocol. Results: Joints were distracted when external fixators were applied and mean 28% of space loss developed after removal of external fixators. In most of cases, satisfactory alignments were maintained. Regarding range of joint motion, mean dorsiflexion angle was 15 degrees and mean plantarflexion angle was 32 degree in the condition of wearing external fixators. There was mean 8% reduction of range of motion but no further progression of ankle stiffness after removal of external fixators. Dorsiflexion was not improved after that, but plantarflexion angle was improved 10% even after removal of external fixators. Patients were generally in compliance with the treatment protocols with high level of satisfaction. Conclusion: We got good results with distracted dynamic external fixators and early continuous half-passive joint motion for pilon fractures in terms of joint pain and range of motion. Therefore we suggest this new protocol as an alternative modality for severe pilon fractures.

UPWARD FLAME SPREAD ON PRACTICAL WALL MATERIALS

  • Kim, Choong-Ik;Ellen G. Brehob;Anil K. Kulkarni
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.138-145
    • /
    • 1997
  • Models of upward flame spread have been attempted in the past, but in the current work an emphasis has been placed on developing a practical model that will be useful across a broad range of materials. Some of the important aspects of the model we: the addition of external radiation to simulate a wall that is a part of an enclosure fire and has flaming walls radiating to it, the use of a correlation for flame heat feedback distribution to the sample surface based on data available in the literature, and the use of an experimentally measured mass loss rate for the sample material, In this paper, the development of the numerical model is presented along with predictions of flame spread for three materials: hardboard, a relatively homogeneous wood-based material; plywood, which is made of laminated wood bonded by adhesives; and a composite material made of fiberglass matrix embedded in epoxy. Predictions are compared with measured data at several levels of external radiation for each material. For the materials tested, the model correctly predicts trends and does a reasonable job predicting flame heights. The need for thermal property data for practical materials, which would be appropriate for flame spread models, is indicated by this work.

  • PDF

Advances in Non-Interference Sensing for Wearable Sensors: Selectively Detecting Multi-Signals from Pressure, Strain, and Temperature

  • Byung Ku Jung;Yoonji Yang;Soong Ju Oh
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.340-351
    • /
    • 2023
  • Wearable sensors designed for strain, pressure, and temperature measurements are essential for monitoring human movements, health status, physiological data, and responses to external stimuli. Notably, recent research has led to the development of high-performance wearable sensors using innovative materials and device structures that exhibit ultra-high sensitivity compared with their commercial counterparts. However, the quest for accurate sensing has identified a critical challenge. Specifically, the mechanical flexibility of the substrates in wearable sensors can introduce interference signals, particularly when subjected to varying external stimuli and environmental conditions, potentially resulting in signal crosstalk and compromised data fidelity. Consequently, the pursuit of non-interference sensing technology is pivotal for enabling independent measurements of concurrent input signals related to strain, pressure, and temperature, ensuring precise signal acquisition. In this comprehensive review, we present an overview of the recent advances in noninterference sensing strategies. We explore various fabrication methods for sensing strain, pressure, and temperature, emphasizing the use of hybrid composite materials with distinct mechanical properties. This review contributes to the understanding of critical developments in wearable sensor technology that are vital for their ongoing application and evolution in numerous fields.

Measurements and methods for analyzing zeta potential of the external surface of hollow fiber membranes (중공사막 외부표면의 제타전위 측정방법 고찰)

  • Lee, Taeseop;Lee, Sangyoup;Lee, Joohee;Hong, Seungkwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.3
    • /
    • pp.353-362
    • /
    • 2009
  • A new method and equipment for measuring the zeta potential of the external surface of hollow fiber (HF) membranes is reported. An existing commercial streaming potential analyzer in conjunction with home-made test cells was used to determine the electrokinetic surface characteristics of various HF membranes. It was shown that measurements of the external surface of HF membrane using the home-made test cells designed in this study were easy and reliable. The zeta potential values were quite accurate and reproducible. By varying the physical shape of the test cells to adjust hydrodynamics inside the test cells, several upgrade versions of home-made test cells were obtained. It was shown that the zeta potential of the external surface of HF membranes was most influenced by membrane materials as well as the way of surface modification. However, the overall surface charge of tested HF membranes were much less than that of commercial polyamide thin-film-composite (TFC) reverse osmosis (RO) membranes due to the lack of surface functional groups. For the HF membranes with the same material, the effect of pore size on the zeta potential was not significant, implying the potential of accurate zeta potential measurements for various HF membranes. The results obtained in this study are expected to be useful for better understating of electrokinetic surface characteristics of the external surface of HF membranes.

Effect of cyclic loading and retightening on reverse torque value in external and internal implants

  • Cho, Woong-Rae;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.288-293
    • /
    • 2015
  • PURPOSE. The aim of this study was to evaluate the effect of cyclic loading and screw retightening on reverse torque value (RTV) in external and internal type implants. MATERIALS AND METHODS. Cement-retained abutments were connected with 30 Ncm torque to external and internal type implants. Experimental groups were classified according to implant connection type and retightening/loading protocol. In groups with no retightening, RTV was evaluated after cyclic loading for 100,000 cycles. In groups with retightening, RTV was measured after 3, 10, 100 cycles as well as every 20,000 cycles until 100,000 cycles of loading. RESULTS. Every group showed decreased RTV after cyclic loading. Before and after cyclic loading, external type implants had significantly higher RTVs than internal type implants. In external type implants, retightening did not affect the decrease in RTV. In contrast, retightening 5 times and retightening after 10 cycles of dynamic loading was effective for maintaining RTV in internal type implants. CONCLUSION. Retightening of screws is more effective in internal type implants than external type implants. Retightening of screws is recommended in the early stage of functional loading.

Influence of Axial Mechanical Stress on the Conductivity of Fullerite Powder

  • Berdinsky, A.S.;Fink, D.;Chun, Hui-Gon;Chadderton, L.T.
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.316-320
    • /
    • 2004
  • The possibility to use powder consisting of fullerite microcrystallines as a device sensitive to the external axial mechanical load is considered. We suppose that the change of conductivity of fullerite microcrystalline powder as a function of external mechanical stress will be useful for the creation of nanoscale devices of sensor electronics. This new effect based on changing of intermolecular distance between fullerene molecules due to the action of external mechanical force, which can change the distance between fullerene molecules because of weak van der Waals interaction exists. The founded effect is quite linear and sensitive to external mechanical stress is better then in well-known pressure transducers is based on silicon technology.

Frequency analysis of beams with multiple dampers via exact generalized functions

  • Failla, Giuseppe
    • Coupled systems mechanics
    • /
    • v.5 no.2
    • /
    • pp.157-190
    • /
    • 2016
  • This paper deals with frequency analysis of Euler-Bernoulli beams carrying an arbitrary number of Kelvin-Voigt viscoelastic dampers, subjected to harmonic loads. Multiple external/internal dampers occurring at the same position along the beam axis, modeling external damping devices and internal damping due to damage or imperfect connections, are considered. The challenge is to handle simultaneous discontinuities of the response, in particular bending-moment/rotation discontinuities at the location of external/internal rotational dampers, shear-force/deflection discontinuities at the location of external/internal translational dampers. Following a generalized function approach, the paper will show that exact closed-form expressions of the frequency response under point/polynomial loads can readily be derived, for any number of dampers. Also, the exact dynamic stiffness matrix and load vector of the beam will be built in a closed analytical form, to be used in a standard assemblage procedure for exact frequency response analysis of frames.

Process Design to Prevent Internal & External Defects of Cold Extruded Products with Double Ribs (이중 리브를 가진 냉간 압출품의 내.외부 결함 방지를 위한 공정 설계)

  • 김동진;김병민
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.612-619
    • /
    • 1999
  • Internal and external defects of an inner pulley for automobile air conditioner are investigated in this study. Inner pulley is a part of compressor clutch assembly of automobile air conditioner. In cold forging of inner pulley, the design requirement are to keep the same height of the inner rib and outer one and to make uniform distribution of hardness in the forged product. At the end of the forging of inner pulley, the piping defect as an external defect begins to form at the back center of the billet. The internal crack as an internal defect also occur at the adiabatic shear band which usually has maximum ductile fracture value. It is important to predict when the internal and external defects occur during the deformation process, in order to minimize the amount of discard that is generated. The finite element simulations are applied to analyze the defects. The validity of the computational results are examined by experiments. These computational results are in good agreement with the experimental ones.

  • PDF