• Title/Summary/Keyword: external magnetic field

Search Result 448, Processing Time 0.034 seconds

Detection Characteristics of a Red Blood Cell Coupled with Micron Magnetic Beads by Using GMR-SV Device (GMR-SV 소자를 이용한 미크론 자성비드와 결합된 적혈구 검출 특성 연구)

  • Lee, Jae-Yeon;Kim, Moon-Jong;Lee, Sang-Suk;Rhee, Jin-Kyu
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.4
    • /
    • pp.101-106
    • /
    • 2014
  • The glass/Ta(5.8 nm)/NiFe(5 nm)/Cu(2.3 nm)/NiFe(3 nm)/IrMn(12 nm)/Ta(5.8 nm) GMR-SV (giantmagneto-resistance-spin valve) multilayer structure films with a magnetoresistance ratio (MR) of 5.0 % and a magnetic sensitivity (MS) of 1.5%/Oe was deposited by dc magnetron sputtering method. Also, GMR-SV device having a width of $7{\mu}m{\sim}8{\mu}m$ similar to the diameter of RBC (red blood cell) was fabricated by the light lithography process. When RBCs coupled with several magnetic beads with a diameter of $1{\mu}m$ dropped upon the GMR-SV device having MR = 1.06% and MS = 0.3 %/Oe, there is observed the variation of about included of a resistance value of ${\Delta}R=0.4{\Omega}$ and ${\Delta}MR=0.15%$ around a external magnetic field of -0.6 Oe. From these results, the GMR-SV device having the width magnitude of a few micron size can be applied as the biosensor for the analysis of a new magnetic property of hemoglobin inside of RBC combined to magnetic beads.

Magnetoresistive Properties of Array IrMn Spin Valves Devices (어레이 IrMn 스핀밸브 소자의 자기저항특성 연구)

  • Ahn, M.C.;Choi, S.D.;Joo, H.W.;Kim, G.W.;Hwang, D.G.;Rhee, J.R.;Lee, S.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.156-161
    • /
    • 2007
  • To develop array magnetic sensors, specular-type giant magnetoresistive- spin valve (GMR-SV) film of Glass/Ta(5)MiFe(7)/IrMn(10)NiFe(5)/$O_2$/CoFe(5)/Cu(2.6)/CoFe(5)/$O_2$/NiFe(7)/Ta(5)(nm) was deposited by using a high-vacuum sputtering system. One of 15 way sensors in the area of $8{\times}8mm^2$ was Patterned a size of $20{\times}80{\mu}m^2$ in multilayer sample by Photo-lithography. All of 15 sensors with Cu electrodes were measured a uniform magnetic properties by 2-probe method. The highest magnetic sensitivity of MR and output voltage measured nearby an external magnetic field of 5 Oe were MS = 0.5%/Oe and ${\triangle}$V= 3.0 mV, respectively. An easy-axis of top-free layers of $CoFe/O_2/NiFe$ with shape anisotropy was perpendicular to one of bottom-pinned layers $IrMn/NiFe/O_2/CoFe$. When the sensing current increased from 1 mA to 10 mA, the output working voltage uniformly increased and the magnetic sensitivity was almost stable to use the nano-magnetic devices with good sensitive properties.

Magnetorheological fluids subjected to tension, compression, and oscillatory squeeze input

  • El Wahed, Ali K.;Balkhoyor, Loaie B.
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.961-980
    • /
    • 2015
  • Magnetorheological (MR) fluids are capable of changing their rheological properties under the application of external fields. When MR fluids operate in the so-called squeeze mode, in which displacement levels are limited to a few millimetres but there are large forces, they have many potential applications in vibration isolation. This paper presents an experimental and a numerical investigation of the performance of an MR fluid under tensile and compressive loads and oscillatory squeeze-flow. The performance of the fluid was found to depend dramatically on the strain direction. The shape of the stress-strain hysteresis loops was affected by the strength of the applied field, particularly when the fluid was under tensile loading. In addition, the yield force of the fluid under the oscillatory squeeze-flow mode changed almost linearly with the applied electric or magnetic field. Finally, in order to shed further light on the mechanism of the MR fluid under squeeze operation, computational fluid dynamics analyses of non-Newtonian fluid behaviour using the Bingham-plastic model were carried out. The results confirmed superior fluid performance under compressive inputs.

TWO DIMENSIONAL SIMULATION OF BEAM INJECTION INTO NEUTRAL PLASMA (Beam 전자와 중성 Plasma 사이의 상호작용에 관한 2차원적 수치계산)

  • 선종호;민경욱
    • Journal of Astronomy and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.113-123
    • /
    • 1990
  • Two dimensional electrostatic model was used to investigate the interactions between beam electron and neutral plasma. It was found that results heavily depend on the beam density. When the beam electron density is lower than the ambient plasma beam density, many beam electrons exhibit vortex structure through beam-plasma interactions and can propagate into the ambient plasma easily from the injection area. On the other hand, when the beam density larget than that of the neutral ambient plasma, it was found that most of the beam electrons constitute return current and ion with much larger mass than that of the electron can be accelerated according to the magnetic field strength. Furthermore, as external field strength varies, it was found that propagation and interaction of the beam can show large dependence on it.

  • PDF

AC loss analysis and experimental evaluation of a high temperature superconductor (고온초전도선재의 교류손실 해석 및 실험)

  • Ryu, Kyung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.96-100
    • /
    • 2001
  • Bi-2223 tapes have been developed for low-field power applications at liquid nitrogen temperature. When the Bi-2223 tapes are used in an application such as a power transmission cable or a power transformer, they are supplied with an AC transport current and exposed to an external magnetic field generated by neighboring tape's AC currents simultaneously. AC loss taking into account such real applications is a crucial issue for power applications of the Bi-2223 tapes to be feasible. In this paper, the transport losses for different AC current levels and arrangements of the neighboring tapes have been measured in a 1.5 m long Bi-2223 tape. The significant increase of the transport losses due to neighboring tape's AC currents is observed. An increase of the transport losses caused by a decrease of the Bi-2223 tape's critical current is a minor effect. The measured transport losses could not be explained by a dynamic resistance loss based on DC voltage-current characteristics in combination with the neighboring tape's AC currents. The transport losses do not depend on the frequency of the neighboring tape's AC currents but its arrangements in the range of small current especially.

  • PDF

Magnetization Angle and Thickness Dependence of Perpendicular Exchange Anisotropy in [Pd/Co]n/FeMn Films

  • Choi, S.D.;Joo, H.W.;Yun, D.K.;Lee, M.S.;Lee, K.A.;Lee, H.S.;Kim, S.W.;Lee, S.S.;Hwang, D.G.
    • Journal of Magnetics
    • /
    • v.11 no.2
    • /
    • pp.70-73
    • /
    • 2006
  • The magnetization angle and thickness dependence of magnetic anisotropy in the exchange-biased [Pd/Co]${\times}$5/FeMn multilayers with an out-of-plane anisotropy were investigated to determine the origin of perpendicular exchange biasing. As the Co thickness increased to 1.5 nm in the [Pd(0.8 nm)/Co(t)]${\times}$5/FeMn(120 nm) films, the hysteresis loops were converted from square loops at a thin Co (<0.4 nm) to complicated round ones at a thick Co. The irregularly asymmetric step (IAS) at the left top of the loop appeared in the loop of the 0.6-nm Co film due to an inhomogeneity in the exchange anisotropy. As the Pd thickness increased to 1.6 nm, the step disappeared, and the perpendicular magnetic anisotropy was maximized in the Co thickness between 0.6 and 0.9 nm. The conversion of the magnetization loop along the magnetization angle coincided with the equation $H_{(eff)}=H_o\;cos{\theta}$. The IAS of the 0.8-nm Pd film disappeared after thermal annealing up to $200^{\circ}C$ under an external magnetic field.

Effects of Shape Anisotropy on Memory Characteristics of NiFe/Co/Cu/Co Spin Valve Memory Cells (NiFe/Co/Cu/Co 스핀밸브 자기저항 메모리 셀에서 형상자기이방성이 메모리 특성에 미치는 영향)

  • 김형준;조권구;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.6
    • /
    • pp.301-305
    • /
    • 1999
  • NiFe(60$\AA$)/Co(5$\AA$)/Cu(60$\AA$)/Co(30$\AA$) spin valve thin films were patterned into magnetoresistive random access memory (MRAM) cells by a conventional optical lithography process and their output and switching properties were characterized with respect to the cell size and geometry. When 1 mA of constant sense current was applied to the cells, a few or a few tens of mV of output voltage was measured within about 30 Oe of external magnetic field, which is an adequate output property for the commercializing of competitive MRAM devices. In order to resolve the problem of increase in the switching thresholds of magnetic layers with the downsizing of MRAM cells, a new approach using the controlled shape anisotropy was suggested and interpreted by a simple calculation of anisotropy energies of magnetic layers consisting of the cells. This concept gave a reduced switching threshold in NiFe(60$\AA$)/Co(5$\AA$) layer consisting of the patterned cells from about 15 Oe to 5 Oe and it was thought that this concept would be much helpful for the realization of competitive MRAM devices.

  • PDF

Magnetoresistance Behavior of CuCo and AgCo Films using a Thermal Evaporation (열증착법으로 제조한 박막헝 CuCo와 AgCo의 자기저항 효과)

  • Song, Oh-Sung;Yoon, Ki-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.811-816
    • /
    • 2006
  • The single layered magnetic thin films with anisotropic magnetoresistance behavior have advantage on micro integration due to their low cost in manufacturing. Although the conventional MCo (M=Cu, Ag) amorphous ribbons using a rapid solidification process have showed appropriate for magnetic property for bulk devices, they are not appropriate for micro-scale devices due to their brittleness. We prepared the thermal evaporated 100 nm-thick $Cu_{1-x}Co_x\;and\;Ag_{1-x}Co_x(x=0.1{\sim}0.7)$ films on silicon wafers and investigated the magnetic property of the as-depo films such as magnetization and magnetoresistance ratio. We confirmed that the maximum MR ratio of 1.4 and 2.6% at the external field of 0.5 Tesla in $CuCo_{30},\;AgCo_{40}$ films, respectively. Our result implies that AMR may be slightly less than those of the conventional CuCo and AgCo ribbons due to surface scattering, but their AMR ratio be enough for micro-scale application with easy integration compatibility for the process without surface oxidation.

  • PDF

A Study on the Magnetoresistive RAM (MRAM) Characteristics of NiFeCo/Cu/Co Trilayers (NiFeCo/Cu/Co 삼층막의 자기저항 메모리 특성에 관한 연구)

  • 김형준;이병일;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.3
    • /
    • pp.152-158
    • /
    • 1997
  • NiFeCo/ Cu /Co trilayers were formed on 4$^{\circ}$ tilt-cut Si(111) substrates with a Cu(50$\AA$) underlayer and large-scaled test magnetoresistive RAM (MRAM) cells were fabricated using a conventional lithographic process. NiFeCo / Cu /Co trilayers deposited on the same templates without any applied magnetic field showed strong in plane uniaxial magnetic anisotropy and excellent magnetoresistive (MR) properties such as high MR ration and sensitivity within a low external magnetic field, which are suitable properties for a MRAM application. In order to obtain optimized MR results in NiFeCo /Cu /Co trilayers, the thickness of Cu spacer was varied. Interlayer coupling between two magnetic layers was observed and it was found that the MR properties were strongly dependent on the coupling force, especially near 20 $\AA$ of Cu spacer thickness. Test MRAM cells were fabricated using the optimized NiFeCo (60$\AA$)/ Cu (25$\AA$)/ Co (30$\AA$) trilayer thin films. With a 10 mA of sense current and 5$\times$$10^5$ of word current, 10 mV of signal output was obtained, which implies the strong potentials of NiFeCo/ Cu /Co trilayer thin films for a MRAM application.

  • PDF

Clinical significance of lymph node size in locally advanced cervical cancer treated with concurrent chemoradiotherapy

  • Oh, Jinju;Seol, Ki Ho;Choi, Youn Seok;Lee, Jeong Won;Bae, Jin Young
    • Journal of Yeungnam Medical Science
    • /
    • v.36 no.2
    • /
    • pp.115-123
    • /
    • 2019
  • Background: This study aimed to assess the in-field lymph node (LN) failure rate according to LN size and to investigate effect of LN size on the survival outcome of patients with locally advanced cervical carcinoma treated with concurrent chemoradiotherapy (CCRT). Methods: A total of 310 patients with locally advanced cervical carcinoma treated with CCRT were enrolled in retrospective study. LN status was evaluated by magnetic resonance imaging. All patients received conventional external beam irradiation and high-dose rate brachytherapy, and concurrent cisplatin-based chemotherapy. In-field LN failure rate according to LN size was analyzed. Results: The median follow-up period was 83 months (range, 3-201 months). In-field LN failure rate in patients with pelvic LN size more than 10 mm was significantly higher than that in patients with pelvic LN size less than 10 mm (p<0.001). A similar finding was observed in the infield para-aortic LN (PALN) failure rate (p=0.024). The pelvic and PALN size (${\geq}10mm$) was a significant prognostic factor of overall-survival (OS) and disease-free survival rate in univariate and multivariate analyses. The OS rate was significantly different between groups according to LN size (<10 mm vs. ${\geq}10mm$). Conclusion: A LN of less than 10 mm in size in an imaging study is controlled by CCRT. On the other hand, in LN of more than 10 mm in size, the in-field LN failure rate increase and the prognosis deteriorate. Therefore, a more aggressive treatment strategy is needed.