• Title/Summary/Keyword: external magnetic field

Search Result 448, Processing Time 0.03 seconds

High-resolution Spectroscopy of the Nickel-like Molybdenum X-ray Laser Toward the Generation of Circularly Polarized X-ray Laser

  • Hasegawa, Noboru;Sasaki, Akira;Yamatani, Hiroshi;Kishimoto, Maki;Tanaka, Momoko;Ochi, Yoshihiro;Nishikino, Masaharu;Kunieda, Yuichi;Kawachi, Tetsuya;Yoneda, Hitoki;Iwamae, Atsushi
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.60-64
    • /
    • 2009
  • We attempted the first measurement of the spectral width of the nickel-like molybdenum x-ray laser (${\lambda}\;=\;18.895\;nm$) by use of a high-resolution spectrometer in order to determine the strength of the magnetic field required for the generation of a circularly polarized x-ray laser. The spectral width was measured to be ${\Delta}{\lambda}\;=\;18\;m{\AA}$ under the substantial lasing condition. The magnetic field required for the generation of a circularly polarized x-ray laser was 40 T. The splitting of the x-ray laser line was clearly obtained under 15 T external magnetic field. The strength of the magnetic field estimated from the splitting of the x-ray laser line was large compared with the external magnetic field. It implies that there might be an alternative mechanism for enhancement of the magnetic field in the gain medium plasma.

Measurement of Joint Resistance of $(Bi,Pb)_2Sr_2Ca_2Cu_3O_x$/Ag Superconducting Tape by Field decay Technique (자장감쇠법을 이용한 $(Bi,Pb)_2Sr_2Ca_2Cu_3O_x$/Ag 초전도선재의 접합저항 측정)

  • Kim, Jung-Ho;Lee, Seung-Muk;Joo, Jin-Ho
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • We fabricated a closed coils by using resistive-joint method and the joint resistance of the coils were estimated by field decay technique in liquid nitrogen. We used the Runge-kutta method for the numerical analysis to calculate the decay properties. The closed coil was wound by $(Bi,Pb)_2Sr_2Ca_2Cu_3O_x$/Ag tape. Both ends the tape were overlapped and soldered to each other. The current was induced in a closed coils by external magnetic flux density. Its decay characteristic was observed by means of measuring the magnetic flux density generated by induced current at the center of the closed coil with hall sensor. The joint resistance was calculated as the ratio of the inductance of the loop to the time constants. The joint resistances were evaluated as a function of critical current of loop, contact length, sweep time, and external magnetic flux density in a contact length of 7 cm. It was observed that joint resistance was dependent on contact length of a closed coil, but independent of critical current, sweep time, and external magnetic flux density. The joint resistance was measured to be higher for a standard four-probe method, compared with that for the field decay technique. This implies that noise of measurement in a standard four-probe method is larger than that of field decay technique. It was estimated that joint resistance was $8.0{\times}10^{-9}{\Omega}$ to $11.4{\times}10^{-9}{\Omega}$ for coils of contact length for 7 cm. It was found that 40Pb/60Sn solder are unsuitable for persistent mode.

Probing galactic and intergalactic magnetic fields using Faraday tomography (optionally title in Korean in parentheses)

  • Ideguchi, Shinsuke;Takahashi, Keitaro;Akahori, Takuya;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.31.1-31.1
    • /
    • 2015
  • For probing magnetic fields in the universe, rotation measure (RM) have been often used. RM allows us to obtain the information of integrated (or averaged) magnetic fields along a line of sight (LOS). On the other hand, the new technique so-called Faraday tomography will be used in practical in the near future thanks to the wide-band polarimetry by Square kilometre Array and/or its precursors. The technique allows us to obtain so-called Faraday dispersion function (FDF). FDF is the distribution function of magnetic fields and polarized sources along a LOS. Because of this fact, it is expected that the studies of magnetic fields associated with various astronomical objects will progress dramatically. Since FDF also includes information of cosmic-rays and thermal electrons, the investigation of FDF may advance the studies of dynamics of external galaxies and/or the star formation activities. We have studied the potentials of Faraday tomography such as a tool to probe the intergalactic magnetic field associated with filaments of galaxies in the large scale structure. We have also studied the realistic FDFs of galaxies for understanding global magnetic field, cosmic-ray and thermal electrons of external galaxies. In the talk, we briefly introduce the Faraday tomography technique and report the results related to the Faraday tomography.

  • PDF

Analysis of Self-Field Losses in AC Superconducting Wire (교류용 초전도선에서의 자기자계 손실에 관한 연구)

  • Lee, Ji-Kwang;Cha, Guee-Soo;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.250-252
    • /
    • 1997
  • Phase difference of external magnetic field and self field is known to do an important role in the generation of the AC loss. This paper analize the AC loss of AC superconducting wire in combined action of an AC transport current and AC magnetic field for various phase differences.

  • PDF

A Study on DC Thermal Plasma Generation and ist Characteristics (직류 열 플라즈마의 발생 및 그특성에 관한 연구)

  • 김원규;황기웅
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.11
    • /
    • pp.1219-1226
    • /
    • 1990
  • This paper is to report the results on the design and construction of a thermal plasma generator with high current DC source. Also, this paper presents the methods to stabilize plasma and to find effects of process variables on plasma characteristics. For this purpose, the reaction chamber, vacuum system, plasma generating torch, magnetic field generating coil with power supply, high current DC source and the other parts have been designed. Fundamental properties of the thermal plasma under various conditions have been measured and analyzed. Magnetic Reynolds Number has been introduced to explain the relationship between plasma and external magnetic field. Through this number, the effect of magnetic field on the plasma has been explained under various flow rates and pressure. A sudden increase in the plasma voltage has been observed with the increase of magnetic field. From this, fundamental changes in plasma flow are believed to occur at the nozzle, and an effort to explain the phenomenon has been tried.

  • PDF

External Field Dependence of $Fe^57$ NMR in Pure Iron

  • Dho, Joongheo;Kim, Mincheol;Lee, Soonchil;Lee, Wonjong;Kim, Yoonbae
    • Journal of Magnetics
    • /
    • v.1 no.1
    • /
    • pp.14-18
    • /
    • 1996
  • The NMR spin echo in pure iron was measured as a function of external magnetic field up to 10 kgauss at room temperature. We observed the signal coming from a single domain formed over 7.5 kgauss which has not been detected in previous works. The resonance frequency shift with external field confirmed that the hyperfine field in iron is -330.2 kgauss. From the comparison of the magnetization curve with the domain wall signal and the resonance frequency in external field, we showed that NMR could give the useful qualitative information on the magnetization process. The extent of the internal strain removed by annealing, which can be hardly seen in hysteresis curves, was clearly shown up in the NMR line-width.

  • PDF

EFFECT OF ORIENTATION OF A MAGNETIC FIELD ON MOTION OF AN ELECTRICALLY CONDUCTING FLUID IN A CONFINED ENCLOSURE (자장 방향 변화에 따른 밀폐공간 내 도전성 유체의 거동)

  • Han, C.Y.;Jun, H.Y.;Park, E.S.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.123-130
    • /
    • 2009
  • Hydromagnetic flow in a confined enclosure under a uniform magnetic field is studied numerically. The thermally active side walls of the enclosure are kept at hot and cold temperatures specified, while the top and bottom walls are insulated. The coupled momentum and energy equations associating with the electromagnetic retarding force as well as the buoyancy force terms are solved by an iterative procedure using the SIMPLER algorithm based on control volume approach. The changes in the flow and thermal field based on the orientation of an external magnetic field, which varies from 0 to $2{\pi}$ radians, are investigated. Resulting heat transfer characteristics are examined too.

Electric current control of creation and annihilation of sub-100 nm magnetic bubbles examined by full-field transmission soft X-ray microscopy

  • Je, Soong-Geun;Jung, Min-Seung;Im, Mi-Young;Hong, Jung-Il
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1201-1204
    • /
    • 2018
  • The effect of electric current pulses on a sub-100 nm magnetic bubble state in a symmetric Pt/Co multilayer was directly observed using a full-field transmission soft X-ray microscope (MTXM). Field-induced evolution of the magnetic stripe domains into isolated bubbles with their sizes down to 100 nm was imaged under varying external magnetic fields. Electric current pulses were then applied to the created magnetic bubbles, and it was observed that the bubbles could be either created or annihilated by the current pulse depending on the strength of applied magnetic field. The results suggest that the Joule heating plays a critical role in the formation and/or elimination of the bubbles and skyrmions. Finally, the schematic phase diagram for the creation and annihilation of bubbles is presented, suggesting an optimized scheme with the combination of magnetic field and electric current necessary to utilize skyrmions in the practical devices.

DC Voltage-Current Characteristics of a High Temperature Superconducting Conductor (고온초전도체의 DC 전압 - 전류 특성)

  • Woo Ryu-Kyung;Li Zhu-Yong;Ma Yang-Hu;Choi Byoung-Ju;Park Kwon-Bae;Oh Il-Sung
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.3
    • /
    • pp.49-53
    • /
    • 2006
  • A high temperature superconductor (HTS) has been developed for power applications such as power cables, fault current limiters and superconducting magnetic energy storage devices. For such applications it is required to understand the DC voltage-current characteristic of the HTS. which is important in analyzing AC loss and flux flow loss quantitatively. In this work, we have experimentally investigated influence of several factors, e.g. critical current density. degradation and AC external magnetic field, on the DC voltage-current characteristic. The measured results have been discussed in engineering application point of view.

Magnetic field-induced deformation in ferromagnetic $Ni_{2}MnGa$ (강자성 $Ni_{2}MnGa$형상기억합금에서의 자장유기 변형)

  • 정순종;민복기;양권승
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.323-326
    • /
    • 2001
  • NI$_2$MnGa-based ferromagnetic shape memory alloys (FSMA) are hoped to be used as robust actuators with high performance and power density, as a replacement of other actuation materials such as thermo-mechanical SMAs and mechanical-electric piezoelectrics. Recently, we have observed significant shape changes under magnetic field application when single- and poly-crystalline forms are used. In the present study, two mechanisms have been proposed to predict the magnetic field-induced shape change as a function of external magnetic field at temperatures below Mr and above Ar. In the case of the field-induced shape change at temperature below M$_{f}$, paired martensite variants are assumed to form by application of magnetic field. The direction of magnetization in martensites formed in austenite matrix is assumed to be parallel to the applied magnetic field in the case of shape change by application at temperature above Af. Various energies has been considered in the shape change under two mechanisms.s.

  • PDF