• 제목/요약/키워드: external loads

Search Result 607, Processing Time 0.026 seconds

Wind loads and wind-resistant behaviour of large cylindrical tanks in square-arrangement group. Part 2: CFD simulation and finite element analysis

  • Liu, Qing;Zhao, Yang;Cai, Shuqi;Dong, Shilin
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.495-508
    • /
    • 2020
  • To investigate the structural behaviour of grouped tanks under wind loads, 2 problems need to be figured out, wind pressures on tank shells and critical loads of the shell under these pressure distribution patterns. Following the wind tunnel tests described in the companion paper, this paper firstly seeks to obtain wind loads on the external wall in a squarely-arranged cylindrical tank group by numerical simulation, considering various layouts. The outcomes demonstrate that the numerical method can provide similar results on wind pressures and better insights on grouping effects through extracted streamlines. Then, geometrically nonlinear analyses are performed using several selected potentially unfavourable wind pressure distributions. It is found that the critical load is controlled by limit point buckling when the tank is empty while excessive deformations when the tank is full. In particular, significant reductions of wind resistance are found on grouped full tanks compared to the isolated tank, considering both serviceability and ultimate limit state, which should receive special attention if the tank is expected to resist severe wind loads with the increase of liquid level.

Effects of Motion Repetition and External Load Depending on Joint Motions (관절 동작에 따른 동작 반복 및 외부 부하 영향에 관한 연구)

  • Dohyung Kee
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.2
    • /
    • pp.107-111
    • /
    • 2023
  • This study aims to empirically investigate effects of motion repetition and external load according to joint motion on discomfort through an experiment. Eighteen college students (female: 9; male: 9) participated in an experiment measuring perceived discomfort using the Borg CR10. Joint(wrist, elbow, shoulder and trunk) motion, its repetition and external load were adopted as independent variables. The results showed that all three independent variables were statistically significant on discomfort. Participants' sex also significantly affected discomfort obtained in the experiment. While the interactions of joint motion and repetition, and joint motion and external load were not significant at α = 0.05, that of motion repetition and external load was significant. Based on the experimental results, four regression equations by the joints involved were presented, which could be used as a tool for evaluating postural loads by the joints. It may be postulated that based on the results of this study, scoring systems of RULA and REBA, and those of OWAS and REBA underestimates effects of motion repetition and external load, respectively. It is expected that the results of this study will be used as a basic data for developing an observational method properly reflecting the effects of motion repetition and external load.

Exact solutions of the piezoelectric transducer under multi loads

  • Zhang, Taotao;Shi, Zhifei
    • Smart Structures and Systems
    • /
    • v.8 no.4
    • /
    • pp.413-431
    • /
    • 2011
  • Under the external shearing stress, the external radial stress and the electric potential simultaneously, the piezoelectric hollow cylinder transducer is studied. With the Airy stress function method, the analytical solutions of this transducer are obtained based on the theory of piezo-elasticity. The solutions are compared with the finite element results of Ansys and a good agreement is found. Inherent properties of this piezoelectric cylinder transducer are presented and discussed. It is very helpful for the design of the bearing controllers.

The buckling of a cross-ply laminated non-homogeneous orthotropic composite cylindrical thin shell under time dependent external pressure

  • Sofiyev, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.6
    • /
    • pp.661-677
    • /
    • 2002
  • The subject of this investigation is to study the buckling of cross-ply laminated orthotropic cylindrical thin shells with variable elasticity moduli and densities in the thickness direction, under external pressure, which is a power function of time. The dynamic stability and compatibility equations are obtained first. These equations are subsequently reduced to a system of time dependent differential equations with variable coefficients by using Galerkin's method. Finally, the critical dynamic and static loads, the corresponding wave numbers, the dynamic factors, critical time and critical impulse are found analytically by applying a modified form of the Ritz type variational method. The dynamic behavior of cross-ply laminated cylindrical shells is investigated with: a) lamina that present variations in the elasticity moduli and densities, b) different numbers and ordering of layers, and c) external pressures which vary with different powers of time. It is concluded that all these factors contribute to appreciable effects on the critical parameters of the problem in question.

Static Test and Analysis of Wing Support Structure for External Stores (외부장착물지지 주익구조 정적 시험 및 해석)

  • Uhm, Wonseop;Yoon, Jongmin
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • Armed aircraft of a basic trainer class installs external stores under wing box by using pylon and performs an operation such as weapon delivery and jettison, and should be designed to withstand all kinds of loads applied to external stores. The static strength test of pylons and wing box was performed to assess the static strength of pylon and their support structures for substantiation. Based on the test, the structures were verified to fully satisfy a given design requirement. In this paper, methods of test load generation of wing box and pylon, evaluation of test result data and design result of test set-up were presented. Comparing the FEM analysis with the same test data can lead to good match and reasonable deviation between both. Finally, based on the test and the analysis, the static strength of test article was substantiated and the reliability and effectiveness of analysis math model were obtained.

Numerical analysis of second-order effects of externally prestressed concrete beams

  • Lou, Tiejiong;Xiang, Yiqiang
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.631-643
    • /
    • 2010
  • A numerical procedure for the geometrical and material nonlinear analysis of concrete beams prestressed with external tendons is described, where the effects of external prestressing are treated as the equivalent loads applied on the concrete beams. The geometrical nonlinearity is considered not only the eccentricity variations of external tendons (second-order effects) but also the large displacement effects of the structure. The numerical method can predict the nonlinear response of externally prestressed concrete beams throughout the entire loading history with considerable accuracy. An evaluation of second-order effects of externally prestressed concrete beams is carried out using the proposed analysis. The analysis shows that the second-order effects have significant influence on the response characteristics of externally prestressed concrete beams. They lead to inferior ultimate load and strength capacities and a lower ultimate stress increase in tendons. Based on the current analysis, it is recommended that, for simply-supported externally prestressed beams with straight horizontal tendons, one deviator at midspan instead of two deviators at one-third span be furnished to minimize these effects.

Analysis of the Energy Saving Effect for the External Insulation Construction by Building Load Calculation Method (건물 부하계산 프로그램을 이용한 외단열 시공의 에너지 절감 효과 분석)

  • Park, Jaejoong;Myeong, Jemin;Song, Doosam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.97-104
    • /
    • 2017
  • Reinforcement of insulation in apartment buildings reduces the heating and cooling energy consumption by lowering the heat transfer in the building envelope. There are differences between internal and external insulation methods in heat transmission properties. However, some building load calculation programs cannot analysis the differences between the two. This is because these programs do no account for the timelag or thermal storage effect of the wall according to the location of insulation. In this study, the heat transmission characteristics of internal and external insulation were analyzed by EnergyPlus, and heating and cooling energy demand was compared. The results showed that external insulation system had lower heating and cooling loads than internal insulation system. Also the heat transfer rate of external insulation is steadier than internal insulation. About 13.6% of heating and cooling energy demand decreased when the outdoor wall was finished with external insulation compared to the demand with internal insulation.

The Effect of Shoulder and Elbow Postures with External Loads on the Perceived Discomfort (어깨와 팔꿈치의 조합자세 및 외부부하가 지각불편도에 미치는 영향)

  • Kim, Dong-Jin;Na, Seok-Hee;Park, Guk-Mu
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.145-151
    • /
    • 2006
  • The objective of this study is to investigate the perceived discomfort for postures combined with shoulder flexion/extension and elbow flexion, and external load. 12 healthy male undergraduate and graduate students participated in this experiment. Experimental variables were the shoulder flexion/extension angle(-20°, 0°, 45°, 90°, 135°), the elbow flexion angle (0°, 45°, 120°), and the external load(0, 1.5Kg, 3Kg) as independent variables and a whole body perceived discomfort using Borg's CR10 as a dependent variable. The subjects maintained the given posture for 60 seconds and then rated the perceived discomfort. The ANOVA results showed that all main factors and two-way interactions were statistically significant at α=0.05. As a result of regression analysis to examine the effect of external load on the perceived discomfort, the perceived discomfort linearly increased as the level of external load increased. Then, the effect of external load on the perceived discomfort was quantitatively classified into three levels based on the result of regression analysis.

Nonlinear Response Structural Optimization of a Spacer Grid Spring for a Nuclear Fuel Rod Using the Equivalent Loads (등가하중을 이용한 원자로 핵연료봉 지지격자 스프링의 비선형 응답 구조 최적설계)

  • Kim, Do-Won;Lee, Hyun-Ah;Song, Ki-Nam;Kim, Yong-ll;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1165-1172
    • /
    • 2007
  • The spacer grid set is a part of a nuclear fuel assembly. The set has a spring and the spring supports the fuel rods safely. Although material nonlinearity is involved in the deformation of the spring, nonlinearity has not been considered in design of the spring. Recently a nonlinear response structural optimization method has been developed using equivalent loads. It is called nonlinear response optimization equivalent loads (NROEL). In NROEL, the external loads are transformed to the equivalent loads (EL) for linear static analysis and linear response optimization is carried out based on the EL in a cyclic manner until the convergence criteria are satisfied. EL is the load set which generates the same response field of linear analysis as that of nonlinear analysis. Shape optimization of the spring is carried out based on EL. The objective function is defined by minimizing the maximum stress in the spring while mass is limited and the support force of the spring is larger than a certain value. The results are verified by nonlinear response analysis. ABAQUS is used for nonlinear response analysis and GENESIS is employed for linear response optimization.

Flight Loads Analysis of Aircraft with High Aspect Ratio Flexible Wing by Using MSC/NASTRAN (MSC/NASTRAN을 활용한 고세장비 유연날개 항공기의 비행하중 해석)

  • Jang, Seyong;Kim, Sangyong;Kim, Youngyup;Cho, Changmin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.657-664
    • /
    • 2013
  • The flight loads analysis was carried out on the aircraft with high aspect ratio flexible wings by using commercial software MSC/NASTRAN. The aerodynamic model for flight loads analysis was corrected, compared with results of the wind tunnel test. And in-house program was developed for pre and post works. In-house program enabling management of much data automatically consists of three modules: 'Construction of the mass distributed model', 'Selection of critical load cases', 'Generation of external loads for structural design'. By utilizing these techniques and programs, the procedure of flight loads analysis was established for effective development of an aircraft.