• Title/Summary/Keyword: external forces

Search Result 739, Processing Time 0.042 seconds

Use of Modern Microscopes in Analysing Fiber and Paper Properties (II)-New Aspect in Fibrillation of Pulp Fibers during Refining-

  • Kim, Chul-Hwan;Keigh R. Wadhams
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.3
    • /
    • pp.60-67
    • /
    • 1999
  • The CLSM and the image analysis technique enhanced observation of fiber wall fibrillation occurred in both the outer and the fiber wall surfaces during refining by non-destructive techniques. In the early stages of refining, it was well observed that a partial separation between the S1 and S2 layer in the secondary wall was made generating a space in the wet fiber walls . With further refining, it was clearly shown that the shear forces imparted by the refiner bar surfaces caused the S1 layer to become totally separated from the S2 layer as well as creating microfibrils. Furthermore, the fibrillation in the inner fiber wall surfaces could be due to the normal force (Fn) by refiner bars, friction force between a fiber and refiner bars (Fs) and inner friction force between fiber walls(fs). It was confirmed that the concept of fibrillation should be extended to fibrillation in the inner fiber wall surfaces as well as internal and external fribrillation.

  • PDF

Imaging of Magnetic Nanoparticles Added in Transformer Oil According to the Electric and Magnetic Fields

  • Lee, Jong-Cheol;Lee, Sang-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.219-220
    • /
    • 2013
  • The phenomenology of liquid breakdown has been an area of interest for many years but is still not fully understood. Moreover, it was known that the behavior of magnetic nanoparticles in transformer oil could affect the dielectric breakdown voltage positively or negatively. In this study, we have imaged the magnetic nanoparticles in a transformer oil in-situ using an optical microscopic set-up and a microchannel according to the electric and magnetic fields applied. And we have calculated numerically dielectrophoresis and magnetophoresis forces, which must be the driving mechanisms to move magnetic nanoparticles in the fluid. It was found that when the electric field is applied the magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field.

  • PDF

An Inverse Dynamic Analysis of Lower Limbs During Gait (보행 중 하지 관절의 역동역학 해석)

  • 송성재
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.301-307
    • /
    • 2004
  • An inverse dynamic model of lower limbs is presented to calculate joint moments during gait. The model is composed of 4 segments with 3 translational joints and 12 revolute joints. The inverse dynamic method is based on Newton-Euler formalism. Kinematic data are obtained from 3 dimensional trajectories of markers collected by a motion analysis system. External forces applied on the foot are measured synchronously using force plate. The use of developed model makes it possible to calculate joint moments for variation of parameters.

Walking Will Recognition Algorithm for Walking Aids Based on Torque Estimation (모터 토크 추정을 통한 보행보조기의 의지파악 알고리즘)

  • Kong, Jung-Shik
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.2
    • /
    • pp.162-169
    • /
    • 2010
  • This paper deals with the recognition algorithm of walking will based on torque estimation. Recently, concern about walking assistant aids is increasing according to the increase in population of elder and handicapped person. However, most of walking aids don't have any actuators for its movement. So, general walking aids have weakness for its movement to upward/download direction of slope. To overcome the weakness of the general walking aids, many researches for active type walking aids are being progressed. Unfortunately it is difficult to control aids during its movement, because it is not easy to recognize user's walking will. Many kinds of methods are proposed to recognize of user's walking will. In this paper, we propose walking will recognition algorithm by using torque estimation from wheels. First, we measure wheel velocity and voltage at the walking aids. From these data, external forces are extracted. And then walking will that is included by walking velocity and direction is estimated. Here, all the processes are verified by simulation and experiment in the real world.

Exact stochastic solution of beams subjected to delta-correlated loads

  • Falsone, G.;Settineri, D.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.307-329
    • /
    • 2013
  • The bending problem of Euler-Bernoulli discontinuous beams is dealt with, in which the discontinuities are due to the loads and eventually to essential constrains applied along the beam axis. In particular, the loads are modelled as random delta-correlated processes acting along the beam axis, while the ulterior eventual discontinuities are produced by the presence of external rollers applied along the beam axis. This kind of structural model can be considered in the static study of bridge beams. In the present work the exact expression of the response quantities are given in terms of means and variances, thanks to the use of the stochastic analysis rules and to the use of the generalized functions. The knowledge of the means and the variances of the internal forces implies the possibility of applying the reliability ${\beta}$-method for verifying the beam.

Ellipsoidal bounds for static response of framed structures against interactive uncertainties

  • Kanno, Yoshihiro;Takewaki, Izuru
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.103-121
    • /
    • 2008
  • This paper presents an optimization-based method for computing a minimal bounding ellipsoid that contains the set of static responses of an uncertain braced frame. Based on a non-stochastic modeling of uncertainty, we assume that the parameters both of brace stiffnesses and external forces are uncertain but bounded. A brace member represents the sum of the stiffness of the actual brace and the contributions of some non-structural elements, and hence we assume that the axial stiffness of each brace is uncertain. By using the $\mathcal{S}$-lemma, we formulate a semidefinite programming (SDP) problem which provides an outer approximation of the minimal bounding ellipsoid. The minimum bounding ellipsoids are computed for a braced frame under several uncertain circumstances.

Transonic Flutter Suppression of the 2-D Flap Wing with External Store using CFD-based Aeroservoelasticity

  • Lee, Seung-Jun;Lee, In;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.121-127
    • /
    • 2006
  • An analysis procedure for the combined problem of control algorithm and aeroelastic system which is based on the computational fluid dynamics(CFD) technique has been developed. The aerodynamic forces in the transonic region are calculated from the transonic small disturbance(TSD) theory. An linear quadratic regulator(LQR) controller is designed to suppress the transonic flutter. The optimal control gain is estimated by solving the discrete-time Riccati equation. The system identification technique rebuilds the CFD-based aeroelstic system in order to form an adequate system matrix which involved in the discrete-time Riccati equation. Finally the controller, that is constructed on the basis of system identification technique, is used to suppress the flutter phenomenon of the airfoil with attached store. This approach, that is, the CFD-based aeroservoelasticity design, can be utilized for the development of effective flutter controller design in the transonic region.

Research on non-destructive testing technology for existing bridge pile foundations

  • Zhang, Xue-feng;Ni, Ying-sheng;Song, Chunxia;Xu, Dong
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.43-58
    • /
    • 2020
  • Pile foundations of existing bridges lie in soil and water environment for long term and endure relatively heavy vertical loads, thus prone to damages, especially after stricken by external forces, such as earthquake, collision, soil heap load and etc., and the piles may be injured to certain degrees as well. There is a relatively complete technical system for quality inspection of new bridge pile foundations without structures on the top. However, there is no mature technical standard in the engineering community for the non-destructive testing technology specific to the existing bridge pile foundations. The quality of bridge pile foundations has always been a major problem that plagues bridge maintenance. On the basis of many years' experiences in test engineering and theoretical studies, this study developed a new type of detection technology and equipment for the existing bridge piles.

Evaluation of Structural Integrity and Performance Using Nondestructive Testing and Monitoring Techniques

  • Rhim, Hong-Chul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.73-81
    • /
    • 1998
  • In this paper, the necessity of developing effective nondestructive testing and monitoring techniques for the evaluation of structural integrity and performance is described. The evaluation of structural integrity and performance is especially important when the structures and subject to abrupt external forces such as earthquake. A prompt and extensive inspection is required over a large area of earthquake-damaged zone. This evaluation process is regarded as a part of performance-based design. In the paper, nondestructive testing and monitoring techniques particularly for concrete structures are presented as methods for the evaluation of structural integrity and performance. The concept of performance-based design is first defined in the paper followed by the role of evaluation of structures in the context of overall performance=based design concept. Among possible techniques for the evaluation, nondestructive testing methods for concrete structures using radar and a concept of using fiber sensor for continuous monitoring of structures are presented.

  • PDF

A Study on Failure Behavior of Structures by Modified Distinct Element Method (수정개별요소법을 이용한 구조물의 파괴거동에 관한 연구)

  • 김문겸;오금호;김상훈;김우진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.210-217
    • /
    • 1996
  • Under strong shock loads including earthquake or blast, structures may start to crack in stress concentrated members. The continuous behavior of the structure changes to the discontinuous. In this study, numerical method analyzing continuous and discontinuous behavior of a structure is developed using a modified distinct element method. Equations of motion of each distinct element are integrated using the central difference method, one of the finite difference methods. Interactions between he elements are considered by an element and pore spring. The forces acting in the center of an element include contact stress transferred by element spring; tensile stress by pore spring; and external traction such as earthquake or blast load. To verify the proposed method, the behavior of the cantilever beam subject to the quasi-static concentrated force at the end is investigated. The failure behavior of the simply supported beam subject to the strong shock at the center is studied. The proposed method can predict the failure behavior of the structure due to the shock loading and the post-failure discontinuous behavior of the structure.

  • PDF