• Title/Summary/Keyword: external flow field

Search Result 138, Processing Time 0.035 seconds

Hall Effect on Unsteady Couette Flow. with Heat Transfer Under Exponential Decaying Pressure Gradient

  • Attia HazemAIi
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2053-2060
    • /
    • 2005
  • The unsteady Couette flow of an electrically conducting, V1SCOUS, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer taking the Hall effect into consideration. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to an exponential decaying pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the ion slip and the uniform suction and injection on both the velocity and temperature distributions is examined.

Comparison of Performances refer to Magnetic and Fluid Analysis of Magneto-Rheological Flow Damper (자기점성유체 댐퍼의 자기장 및 유동 해석에 따른 성능비교)

  • Song, Jun-Han;Son, Sung-Wan;Lee, Gyu-Seop;Chun, Chong-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.98-102
    • /
    • 2009
  • The magneto-rheological fluid expresses different cohesiveness according to the strength of the external electric current. To manufacture the magneto-rheological fluid damper that uses such characteristics of the fluid, a flow analysis of the inner damper was conducted to forecast the damper's capacity. In addition, using the finite element method software, analysis on the characteristics of electromagnetic field around the coil operation unit inside the damper. Based on the result of the analysis, a single core damper and a double core damper were built and tested for their dynamic function. Based on the result of the experiment, the propriety of the flow analysis was demonstrated, and the proposed model was verified.

  • PDF

Experimental Analysis of ER Effects about Flow-Mode (Flow Mode 유동에 대한 ER효과의 실험적 해석)

  • 임춘성;이은준;주동우;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1135-1138
    • /
    • 2003
  • ERFs(Electrorheological Fluids) arc a complex system consisting of polarizable particles and insulation liquid. When an external electric field is applied to ERFs, its apparent viscosity increases dramatically. This phenomenon is called the ER effect. Generally, the behavior of ERFs has been modeled on those of Bingham fluids. But the behavior of ERFs differs from those of Bingham fluids in many respects. In the paper, ER effect concerning flow mode of ERFs is analyzed experimentally. According to several flow conditions, the change of ER effect is presented and visualized. A new modeling methodology of ER effect to reduce the modeling error is presented.

  • PDF

Flow Characteristics of Sweeping Jet Issued by a Feedback-free Fluidic Oscillator (피드백이 없는 유체진동기에서 분사되는 Sweeping jet의 유동 특성)

  • Nam, Sanghyun;Kim, Donguk;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.1
    • /
    • pp.50-58
    • /
    • 2020
  • This paper presents flow characteristics of a sweeping jet issued by a feedback-free fluidic oscillator. Overall flow characteristics of feedback-free sweeping jet (FFSJ) were analyzed using flow visualization. The feedback-free sweeping jet has a sinusoidal external flow pattern. The oscillating frequency of the FFSJ is three times higher than that of a conventional sweeping jet at the same Reynolds number. Flow structure and turbulence characteristics were investigated using time-resolved particle image velocimetry (TR-PIV). In instantaneous velocity fields, the flow did not stay at ends but changed the direction continuously in contrast to the conventional sweeping jet. Velocity distributions at each plane which were extracted from mean velocity field has Gaussian distribution, which is similar with a circular jet. The sweep angles were constant as 45° at all Reynolds numbers in the high flow rate regime.

A Study on the Rheology Characteristics of Magnetic Fluids in a Circular Pipe (원관내 자성유체의 Rheology 특성에 관한 연구)

  • Jeon, Eon-Chan;Park, Joung-Woo;Kim, Tae-Ho;Kim, Soo-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.38-44
    • /
    • 2008
  • In the present paper, we theoretically analyze the flow of magnetic fluids in a circular pipe with a vertical magnetic field and investigate the magnetic response by the external magnetic field. Theoretical study through the governing equation derived by Siliomis is carried out with numerical analysis by the Gauss Elimination Method. Using polar and magnetic effect parameters, theoretical equations and distributions for the velocity, apparent viscosity as the magnetic response are shown. Especially, in the region of strong magnetic field the specific property is appeared by finding a critical magnetic effect parameter for a polar effect parameter.

  • PDF

Magnetorheological fluids subjected to tension, compression, and oscillatory squeeze input

  • El Wahed, Ali K.;Balkhoyor, Loaie B.
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.961-980
    • /
    • 2015
  • Magnetorheological (MR) fluids are capable of changing their rheological properties under the application of external fields. When MR fluids operate in the so-called squeeze mode, in which displacement levels are limited to a few millimetres but there are large forces, they have many potential applications in vibration isolation. This paper presents an experimental and a numerical investigation of the performance of an MR fluid under tensile and compressive loads and oscillatory squeeze-flow. The performance of the fluid was found to depend dramatically on the strain direction. The shape of the stress-strain hysteresis loops was affected by the strength of the applied field, particularly when the fluid was under tensile loading. In addition, the yield force of the fluid under the oscillatory squeeze-flow mode changed almost linearly with the applied electric or magnetic field. Finally, in order to shed further light on the mechanism of the MR fluid under squeeze operation, computational fluid dynamics analyses of non-Newtonian fluid behaviour using the Bingham-plastic model were carried out. The results confirmed superior fluid performance under compressive inputs.

CFD ANALYSIS ON AIRCRAFT STORE SEPARATION VALIDATION (무장분리 안전성을 위한 전산해석)

  • Jueng, H.S.;Yoon, Y.H.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.14-16
    • /
    • 2007
  • A critical problem in the integration of stores into new and existing aircraft is the safe separation of the stores from the aircraft at a variety of flight conditions representative of the aircraft flight regime. Typically, the certification of a particular store/aircraft/flight condition combination is accomplished by a flight test. Flight tests are very expensive and do expose the pilot and aircraft to a certain amount of risk. Wind tunnel testing, although less expensive than flight testing, is still expensive. Computational Fluid Dynamics(CFD) has held out the promise of alleviating expensive and risk by simulating weapons separation computationally. The forces and moments on a store at carriage and at various points in the flow field of te aircraft can be computed using CFD applied to the full aircraft and store geometry. This study needs full dynamic characteristics study and flow analysis for securing store separation safety. Present study performs dynamic simulation of store separation with flow analysis using Chimera grid scheme which is usually used for moving simulations.

  • PDF

The Effect of Suction and Injection on Unsteady Flow of a Dusty Conducting Fluid in Rectangular Channel

  • Attia Hazem Ali
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1148-1157
    • /
    • 2005
  • In the present study, the unsteady Hartmann flow of a dusty viscous incompressible electrically conducting fluid under the influence of an exponentially decreasing pressure gradient is studied without neglecting the ion slip. The parallel plates are assumed to be porous and subjected to a uniform suction from above and injection from below. The fluid is acted upon by an external uniform magnetic field which is applied perpendicular to the plates. An analytical solution for the governing equations of motion is obtained to yield the velocity distributions for both the fluid and dust particles.

Development of the S/G TSP Clogging Image Analysis Algorithm (증기발생기 유로홈막힘 사진판독 알고리즘 개발)

  • Cho, Nam Cheoul;Kim, Wang Bae;Moon, Chan Kook
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.8-14
    • /
    • 2011
  • The clogging of the flow area at the tube support plates(TSPs), especially at the upper TSPs results in the water level oscillation of a steam generator during normal operation. A reduction of the TSP flow area causes to increase in pressure drop within the two-phase flow zone, which destabilizes the boiling flow through the tube bundle. This phenomenon was occasionally observed at a few domestic and foreign nuclear power plants. One of the methods for defining the flow area clogging is visual inspection, which is the most effective inspection method. The results of the visual inspection for TSPs' flow area are clogging images on TSPs' quartrefoil lobes. These images are complexly distorted due to lens aberration and external factors like the distance to a subject and angle etc. In this work, we developed the analysis algorithm for clogging image of the TSP flow area of steam generators. For this purpose, we designed an image verification device applicable to the camera employed in the field for visual inspection and then, we demonstrated the validity of image analysis algorithm by using this device and commercial autoCAD program.

A Study on the Electrification Phenomena Affecting Industrial Disaster (산업재해에 미치는 대전현상에 관한 연구)

  • 육재호;안병준
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.101-106
    • /
    • 1993
  • The streaming current of insulating oil increases with increasing oil velocity and oil amount, A contact potential difference as an energetic state exits in the polymer thin film, both sides of which are contacted by two different metals having different work functions. Accordingly, the potential difference may be a cause for the short circuited transient current flowing through the external circuit. The polymers are electrificated as the electric field Is supplied, and the currents flow with increasing temperature.

  • PDF