• Title/Summary/Keyword: exterior beam-column joints

Search Result 111, Processing Time 0.026 seconds

Cyclic-loading Tests of 113-Scale R.C. Exterior Beam-column Joints With Non-Seismic Detailing (비내진 상세를 가진 1/3 축소 R.C. 외부 접합부의 반복 횡하중 실험)

  • 이한선;차병기;고동우;임동운
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.179-184
    • /
    • 2001
  • The objective of this study is to clarify the seismic capacity and the characteristics in the hysteretic behavior of RC structures with nonseismic detailing. To do this, an exterior beam-column subassemblage was selected from a 10-story RC building and 6 1/3-scale specimens were manufactured with 3 variables; ⑴ with and without slab, ⑵ upward and downward direction of anchorage for the bottom bar in beams, and ⑶ with and without hoop bars in the joint region. The test results have shown that ⑴ the existence of slab increased the strength in positive and negative moment, 25% and 62%, respectively; ⑵ the Korean practice of anchorage (downward and 25 $d_{b}$ anchorage length) caused the 8% reduction of strength and the early strength degradation when compared with the case of seismic details; and ⑶ the existence of hoop bars in the joint region does not show significant difference because the size of column is much larger than that of beam.m.

  • PDF

Experiments of the Lateral Loading Capacity of Exterior Joints of Non-seismically Designed RC Frames in Korea (비내진설계된 우리나라 RC 외부 접합부의 횡저항 능력에 관한 실험)

  • Lee, Young-Wook;Park, Hyeong-Kyeon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.29-36
    • /
    • 2010
  • To investigate the cyclic characteristics of exterior joints in RC frame buildings which are typically used after 1988, 70% scaled T-shaped beam-column subassemblies were designed and tested with a displacement control that is composed of 9 steps, until 3.5% story drift was reached. Axial forces are applied to columns during the experiment to simulate a real situation. The results show that the non-seismic detailed specimens failed before reaching 0.85% story drift, and their strengths are less than 0.85 times the nominal flexural strength which beam or columns should reach. The relationship of principal stress and story drift of exterior joints is similar to the one that Priestly proposed.

Seismic repair of reinforced concrete beam-column subassemblages of modern structures by epoxy injection technique

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.543-563
    • /
    • 2002
  • The use of the epoxy pressure injection technique to rehabilitate reinforced concrete beam-column joints damaged by strong earthquakes is investigated experimentally and analytically. Two one-half-scale exterior beam-column joint specimens were exposed to reverse cyclic loading similar to that generated from strong earthquake ground motion, resulting in damage. Both specimens were typical of new structures and incorporated full seismic details in current building codes. Thus the first specimen was designed according to Eurocode 2 and Eurocode 8 and the second specimen was designed according to ACI-318 (1995) and ACI-ASCE Committee 352 (1985). The specimens were then repaired with an epoxy pressure injection technique. The repaired specimens were subjected to the same displacement history as that imposed on the original specimens. The results indicate that the epoxy pressure injection technique was effective in restoring the strength, stiffness and energy dissipation capacity of specimens representing a modem design.

Ducitility Estimation of Exterior Beam-Column Joints using High-Strength Concrete (고강도 철근 콘크리트 보-기둥 접합부의 연성평가)

  • 장극관;서대원;황정현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.415-418
    • /
    • 1999
  • This paper presents a study in the ductility of reinforced concrete beam-column-slab joints Three assemblies were designed 2/3 scale (f'c=240kg/$\textrm{cm}^2$, f'c=700kg/$\textrm{cm}^2$) and tested to investigate seismic behavior. From the test results, 1) flexural cracks emerge to inside of beam deeply for high strength concrete member, 2) the high-strength specimens degraded in stiffness and strength, and unstable hysteretic behaviors were observed, owing to the brittleness of high-strength concrete beyond its range. 3) The confinement provided by the additional hoops to the column bar is probably the main reason for this improvement in behavior.

  • PDF

Seismic performance of RCS beam-column joints using fiber reinforced concrete

  • Nguyen, Xuan Huy;Le, Dang Dung;Nguyen, Quang-Huy;Nguyen, Hoang Quan
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.599-607
    • /
    • 2020
  • This paper deals with the experimental investigation on the behavior of RCS beam-column exterior joints. Two full-scale specimens of joints between reinforced concrete columns and steel beams are tested under cyclic loading. The objective of the test is to study the effect of steel fiber reinforced concrete (SFRC) on the seismic behavior of RCS joints. The load bearing capacity, story drift capacity, ductility, energy dissipation, and stiffness degradation of specimens are evaluated. The experimental results point out that the FRC joint is increased 20% of load carrying capacity and 30% of energy dissipation capacity in comparison with the RC joint. Besides, the FRC joint shown lower damage and better ductility than RC joint.

Numerical modelling of FRP strengthened RC beam-column joints

  • Mahini, Seyed S.;Ronagh, Hamid R.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.5
    • /
    • pp.649-665
    • /
    • 2009
  • This paper reports part of a comprehensive research study conducted at the University of Queensland on the ability of CFRP web-bonded systems in strengthening an exterior beam-column joint subjected to monotonic loads. One 1/2.2 scaled plain and four CFRP repaired/retrofitted joints subjected to monotonic loads were analysed using the nonlinear finite-element program ANSYS and the results were calibrated against experiments. The ANSYS model was employed in order to account for tension stiffening in concrete after cracking and a modified version of the Hognestad's model was used to model the concrete compressive strength. The stress-strain properties of main steel bars were modelled using multilinear isotropic hardening model and the FRPs were modelled as anisotropic materials. A perfect bond was assumed as nodes were shared between adjacent elements irrespective of their type. Good agreement between the numerical predictions and the experimental observation of the failure mechanisms for all specimens were observed. Closeness of these results proved that the numerical analysis can be used by design engineers for the analysis of web-bonded FRP strengthened beam-column joints with confidence.

Evaluation of Seismic Performance of High Strength Reinforced Concrete Exterior Beam-Column Joints Using High Ductile Fiber-Reinforced Mortar (고인성섬유 복합모르타르를 활용한 고강도 철근콘크리트 외부 보-기둥 접합부의 내진성능평가)

  • Ha, Gee-Joo;Shin, Jong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.419-428
    • /
    • 2013
  • In this study, experimental research was carried out to evaluate the constructability and seismic performance of high strength R/C exterior beam-column joints regions, with or without the shear reinforcement, using high ductile fiber-reinforced mortar. Five specimens of retrofitted the exterior beam-column joint regions using high ductile fiber-reinforced mortar are constructed and tested for their retrofit performances. Specimens designed by retrofitting the exterior beam-column joint regions (BCJNSP series) of existing reinforced concrete building showed a stable mode of failure and an increased its maximum load-carrying capacity by 1.09~2.03 times in comparison with specimen of BCJNS due to the effect of enhancing dispersion of crack control at the time of initial loading and bridging of fiber from retrofitting new high ductile materials during testing. Specimens of BCJNSP series attained its maximum load carrying capacity by 0.92~0.96 times and increased its energy dissipation capacity by 1.62 times when compared to standard specimen of BCJC with a displacement ductility of 4.

Seismic Response of Exterior RC Column-to-Steel Beam Connections (I. Experiment) (콘크리트 기둥-강재 보 외부 접합부의 내진성능(I. 실험))

  • 조순호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.275-282
    • /
    • 2000
  • The seismic behavior of moment connections consisting of reinforced concrete columns and steel beams is investigated based on four 2/3 scale tests of exterior beam-column joints subject to reversed cyclic loading. The major test parameters were the number of hoops the isolated concrete contribution and the use of headed studs in the joint regions between columns and beams. Their influence on the seismic response of the connections is presented and compared. Among them the CF3 specimen containing two hoops each in the joint and column regions above and below exhibited the most favourable hysteretic response. This indicates that this type of joint details can be used in the low seismic areas such as Korea.

  • PDF

An Experimental Study on Column Penetration Joint of RC Column-Steel Beam (기둥관통형 RC 기둥-철골 보 접합부에 관한 실험적 연구)

  • 김승훈;한상환;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.475-480
    • /
    • 1998
  • The composite framed structures, consisting of RC columns and steel beams more popular in korea because of their efficiency and quality. However the force transfer mechanisms between the column and beam may by very complicated since the materials of columns and beams are different. This study develops "the column penetration joint" which the web of steel beam doesn't penetrate and which could improve the strength, deformation, and energy dissipation capacities compared to existing composite joints. It is the concrete-filled square tube joint with the exterior diaphragms and the cruciform stiffening plates. This study evaluated the strength of RC column penetration to steel beam connection by analyzing the results of partial experiments, and reviewed the applicability the strength formula through the comparison of tested results of joint experiment.

  • PDF

Static behavior of novel RCS through-column-type joint: Experimental and numerical study

  • Nguyen, Xuan Huy;Le, Dang Dung;Nguyen, Quang-Huy
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.111-126
    • /
    • 2019
  • This paper deals with experimental investigation and modeling of the static behavior of a novel RCS beam-column exterior joint. The studied joint detail is a through-column type in which an H steel profile totally embedded inside RC column is directly welded to the steel beam. The H steel profile was covered by two supplementary plates in the joint area in order to avoid the stirrups resisting shear in the joint area. Two full-scale through-column-type RCS joints were tested under static loading. The objectives of the tests were to examine the connection performance and to highlight the contribution of two supplementary plates on the shear resistance of the joint. A reliable nonlinear 3D finite element model was developed using ABAQUS software to predict the response and behavior of the studied RCS joint. An extensive parametric study was performed to investigate the influences of the stirrups, the encased profile length and supplementary plate length on the behavior of the studied RCS joint.