• 제목/요약/키워드: exterior beam-column joint

검색결과 127건 처리시간 0.023초

Cyclic response and design procedure of a weak-axis cover-plate moment connection

  • Lu, Linfeng;Xu, Yinglu;Zheng, Huixiao;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제26권3호
    • /
    • pp.329-345
    • /
    • 2018
  • This paper systematically investigated the mechanical performance of the weak-axis cover-plate connection, including a beam end monotonic loading test and a column top cyclic loading test, and a series of parametric studies for exterior and interior joints under cyclic loading using a nonlinear finite element analysis program ABAQUS, focusing on the influences of the shape of top cover-plate, the length and thickness of the cover-plate, the thickness of the skin plate, and the steel material grade. Results showed that the strains at both edges of the beam flange were greater than the middle's, thus it is necessary to take some technical methods to ensure the construction quality of the beam flange groove weld. The plastic rotation of the exterior joint can satisfy the requirement of FEMA-267 (1995) of 0.03 rad, while only one side connection of interior joint satisfied ANSI/AISC 341-10 under the column top cyclic loading. Changing the shape or the thickness or the length of the cover-plate did not significantly affect the mechanical behaviors of frame joints no matter in exterior joints or interior joints. The length and thickness of the cover-plate recommended by FEMA 267 (1995) is also suitable to the weak-axis cover-plate joint. The minimum skin plate thickness and a design procedure for the weak-axis cover-plate connections were proposed finally.

Structural repairing of damaged reinforced concrete beam-column assemblies with CFRPs

  • Yurdakul, Ozgur;Avsar, Ozgur
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.521-543
    • /
    • 2015
  • Depending on the damage type as well as the level of damage observed after the earthquake, certain measures should be taken for the damaged buildings. In this study, structural repairing of two different types of damaged RC beam-column assembly by carbon fiber-reinforced polymer sheets is investigated in detail as a member repairing technique. Two types of 1:1 scale test specimens, which represent the exterior RC beam-column connection taken from inflection points of the frame, are utilized. The first specimen is designed according to the current Turkish Earthquake Code, whereas the second one represents a deficient RC beam-column assembly. Both of the specimens were subjected to cyclic quasistatic loading in the laboratory and different levels of structural damage were observed. The first specimen displayed a ductile response with the damage concentrated in the beam. However, in the second specimen, the beam-column joint was severely damaged while the rest of the members did not attain their capacities. Depending on the damage type of the specimens, the damaged members were repaired by CFRP wrapping with different configurations. After testing the repaired specimens, it is found that former capacities of the damaged members were mostly recovered by the application of CFRPs on the damaged members.

Seismic repair of exterior R/C beam-to-column joints using two-sided and three-sided jackets

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • 제13권1호
    • /
    • pp.17-34
    • /
    • 2002
  • The use of local two-sided and three-sided jacketing for the repair and strengthening of reinforced concrete beam-column joints damaged by severe earthquakes is investigated experimentally and analytically. Two exterior beam-column joint specimens ($O_1$ and $O_2$) were submitted to a series of cyclic lateral loads to simulate severe earthquake damage. The specimens were typical of existing older structures built in the 1960s and 1970s. The specimens were then repaired and strengthened by local two-sided or three-sided jacketing according to UNIDO Manual guidelines. The strengthened specimens ($RO_1$ and $RO_2$) were then subjected to the same displacement history as that imposed on the original specimens. The repaired and strengthened specimens exhibited significantly higher strength, stiffness and better energy dissipation capacity than the original specimens.

카본 시트 튜브로 구속된 콘크리트 외부 보-기둥 접합부의 균열 양상에 대한 연구 (Study on the Crack Shape of Concrete Exterior Beam-Column Joints Confined by Carbon Sheet Tube)

  • 문영균;박진영;이경훈;홍원기;김희철
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.199-204
    • /
    • 2003
  • The purpose of this study is to experimentally investigate the structural performance of concrete exterior beam-column joints confined by carbon sheet tube. Four specimens were produced with different numbers of carbon sheet and the other specimen was produced with reinforced concrete. A hydraulic dynamic actuator with 30tonf capacity was used to cyclic lateral loading test. The experimental results represent that the numbers of carbon sheet have an influence the load and displacement capacity. However, the bond length of carbon sheets for connecting beam and column has to be considered to improve the capacity of joint.

  • PDF

CFRP를 이용한 비내진 철근콘크리트 외부 보-기둥 접합부의 내진 보강 (Seismic Retrofit of RC Exterior Beam-Column Joints Strengthened with CFRP)

  • 김민;이기학;이재홍;우성우;이정원
    • 콘크리트학회논문집
    • /
    • 제18권6호
    • /
    • pp.729-736
    • /
    • 2006
  • 적절한 내진상세로 설계되지 않은 철근콘크리트 구조물은 보-기둥 접합부내에서 취약한 전단파괴에 노출되고 큰 변형이 일어나, 구조적인 붕괴가 일어날 수 있다. 본 연구는 CFRP로 보강한 철근콘크리트 외부 보-기둥 접합부를 반복 횡력을 적용하여 보강된 보-기둥 접합부의 내진성능을 알아보았다. 보-기둥 접합부의 구조적 성능을 향상시키기 위해 CFRP의 부착 위치나 두께를 달리하여 효과적인 보강방법을 관찰하고자 하였다. 비내진상세로 배근된 실험체 1개와 내진상세로 배근된 실험체 1개 그리고 비내진상세를 가진 실험체를 CFRP로 보강한 실험체 6개, 총 8개의 보-기둥 접합부 실험체에 반복횡력을 가하여 내진보강의 효과를 조사하였다. 반복 횡력을 적용하였다. 본 연구에서는 비내진상세를 가진 콘크리트 보-기둥 접합부에 대한 CFRP의 보강방법은 구조물의 강도와 연성을 증가시켜 구조물의 내진성능을 향상시키는데 효과적임을 보여 주었다.

Effect of Anchorage on Strength of Precast R/C Beam-Column Joints

  • Kim, Kwangyeon
    • Architectural research
    • /
    • 제2권1호
    • /
    • pp.55-60
    • /
    • 2000
  • Recently, there is a great demand for precast reinforced concrete (RC) construction methods on the purpose of simplicity in construction. Nishimatsu Construction Company has developed a construction method with precast reinforced concrete members in medium-rise building. In this construction method, how to joint precast members, especially the anchorage of the main bar of beam, is important problem. In this study, the structural performance of exterior joints with precast members was investigated. The parameters of the test specimens are anchorage type of the main bar of beam (U-shape anchorage or anchorage plate) and the ratio of the column axial force to the column strength. Specimens J-3 and J-4 used U-shape anchorage and the ratio of the column axial force of specimen J-4 was higher. On the other hand, specimens J-5 and J-6 used anchorage plate, and the anchorage lengths are 15d and 18d, respectively. Experimental results are summarized as follows; 1) For the joints with beam flexural failure mode, it was found that the maximum strength of specimen with anchorage plate is equal to or larger than that of specimen with conventional U-shaped anchorage if the anchorage length of more than 15d would be ensured, 2) Each specimen shows stable hysteretic curves and there were no notable effects on the hysteretic characteristics and the maximum strength caused by the anchorage method of beam main bar and the difference of column axial stress level.

  • PDF

전단보강근이 배근된 외부 보기둥 접합부에 정착된 헤드 철근의 스트럿-타이 모델 (Strut-And-Tie Model for Headed Bar Anchored in Exterior Beam-Column Joint with Transverse Reinforcement)

  • 천성철;홍성걸;오보환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.454-457
    • /
    • 2006
  • This study presents a strut-and-tie model for the development of headed bars in an exterior beam-column joint with transverse reinforcements. The tensile force of a headed bar is considered to be developed by head bearing together with bond along a bonded length as a partial embedment length. The model requires construction of struts with biaxially compressed nodal zones for head bearing and fan-shaped stress fields against neighboring nodal zones for bond stresses along the bonded length. Due to the existence of transverse reinforcements, the fan-shaped stress fields are divided into direct and indirect fan-shaped stress fields. A required development length and head size of a headed bar can be optimally designed by adjusting a proportion between a bond contribution and bearing contribution.

  • PDF

변형경화형 시멘트 복합체(SHCC)로 보-기둥 접합부 단면이 증설된 휨항복형 철근콘크리트 보의 구조성능 (Structural Performance of Flexural Dominant Reinforced Concrete Beams strengthened in Beam-Column Joint with SHCC)

  • 송선화;장광수;김윤수;김선우;김용철;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.53-56
    • /
    • 2008
  • 대부분의 철근콘크리트 라멘 구조물은 지진하중 작용 시 가장 취약한 부분인 보-기둥 접합부 영역에서 큰 피해를 유발할 수 있다. 이러한 피해를 방지하기 위하여 보수 및 보강에 관한 연구가 이루어지고 있으며, 전 세계적으로 내진규정이 강화되고 구조물의 내진성능이 중요시되면서 지진에 효율적으로 저항할 수 있는 성능을 확보한 재료 개발이 증가되고 있다. 변형경화형 시멘트 복합체(Strain-hardening cementitious composite, SHCC)는 연성능력이 우수하여 보-기둥 접합부 영역에서 상당한 보강효과가 기대된다. 따라서 본 연구에서는 SHCC로 접합부를 보강한 철근콘크리트 보의 보강특성을 평가하고자 총 3개의 실험체를 제작하였다. 실험을 통하여 균열 및 파괴양상에 대하여 휨거동 특성을 평가하고 섬유 혼입률에 따른 SHCC의 보강효과에 대한 강도를 비교하였다.

  • PDF

비내진 상세를 가진 저층 R.C조의 외부접합부 거동 (Exterior Joint Behavior of Low-Rise Reinforced Concrete Frame with Non-Seismic Detail)

  • 김영문;기찬호;장준호;이세웅;김상대
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.481-486
    • /
    • 1998
  • In this paper, elastic and inelastic behavior of exterior joint of moment-resisting R.C frame with non-seismic detail subjected to reversed cyclic lateral load such as earthquake excitations was investigated. 1/2-scals subassemblage exterior beam-column joint including slab was manufactured based on similitude law. Then, pseudo static test under the displacement control was performed. The results of 1)crack pattern and failure mode, 2)degradation stiffness and strength, energy dissipation capacity from load-displacement hysteresis curve, 3)strain of steel were analysed.

  • PDF

Effect of reinforcing details on seismic behavior of RC exterior wide beam-column joint

  • Jae Hyun Kim;Seung-Ho Choi;Sun-Jin Han;Hoseong Jeong;Jae-Yeon Lee;Kang Su Kim
    • Earthquakes and Structures
    • /
    • 제25권4호
    • /
    • pp.283-296
    • /
    • 2023
  • This paper presents experimental and numerical studies of seismic performance on reinforced concrete (RC) wide beam (WB) joints. Two RC-WB joint specimens and one conventional RC joint specimen were fabricated using the reinforcing details of longitudinal reinforcing bars in a beam as a variable, and quasi-static cyclic loading tests were performed. The results were used to compare and analyze the load-drift ratio relationship, failure mode, and seismic performance of the specimens quantitatively. In addition, a finite element (FE) analysis of the RC-WB joint was conducted, and the rationality of the FE model was validated by comparing it with the test results. Based on the FE model, a parametric study was conducted, where the ratio of longitudinal reinforcing bars placed on the outer and inner parts of the joint (𝜌ex/𝜌in) was a key variable. The results showed that, in the RC-WB joint, an increase of 𝜌ex/𝜌in leads to more severe damage to concrete, which reduces the seismic performance of the RC-WB joints.