• Title/Summary/Keyword: exterior beam-column connection

Search Result 44, Processing Time 0.019 seconds

A Study on the Strength of H Beam-to-Rectangular Tube Column Connections with Exterior Diaphragms by Simplified Tension Test (단순 인장 실험에 의한 외부 스티프너를 갖는 각형 강관기둥과 H형강보 접합부의 최대내력에 대한 연구)

  • Park, Jong Won;Kang, Hae Kwan;Lee, Sang Hoon;Kim, Young Chan
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.25-35
    • /
    • 1998
  • A moment connection of H beam-to-rectangular tube column with external stiffeners was proposed. A formula to predict the ultimate strength of the connection was derived based on the yield line mechanism. Experimental investigation was performed to determine the applicability of the connection type and the strength formula. The ultimate strengths computed by the formula agreed well with the experimental values.

  • PDF

Cyclic response and design procedure of a weak-axis cover-plate moment connection

  • Lu, Linfeng;Xu, Yinglu;Zheng, Huixiao;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.329-345
    • /
    • 2018
  • This paper systematically investigated the mechanical performance of the weak-axis cover-plate connection, including a beam end monotonic loading test and a column top cyclic loading test, and a series of parametric studies for exterior and interior joints under cyclic loading using a nonlinear finite element analysis program ABAQUS, focusing on the influences of the shape of top cover-plate, the length and thickness of the cover-plate, the thickness of the skin plate, and the steel material grade. Results showed that the strains at both edges of the beam flange were greater than the middle's, thus it is necessary to take some technical methods to ensure the construction quality of the beam flange groove weld. The plastic rotation of the exterior joint can satisfy the requirement of FEMA-267 (1995) of 0.03 rad, while only one side connection of interior joint satisfied ANSI/AISC 341-10 under the column top cyclic loading. Changing the shape or the thickness or the length of the cover-plate did not significantly affect the mechanical behaviors of frame joints no matter in exterior joints or interior joints. The length and thickness of the cover-plate recommended by FEMA 267 (1995) is also suitable to the weak-axis cover-plate joint. The minimum skin plate thickness and a design procedure for the weak-axis cover-plate connections were proposed finally.

Experimental and numerical assessment of beam-column connection in steel moment-resisting frames with built-up double-I column

  • Dehghan, Seyed Mehdi;Najafgholipour, Mohammad Amir;Ziarati, Seyed Mohsen;Mehrpour, Mohammad Reza
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.315-328
    • /
    • 2018
  • Built-up Double-I (BD-I) columns consist of two hot rolled IPE sections and two cover plates which are welded by fillet welds. In Iran, this type of column is commonly used in braced frames with simple connections and sometimes in low-rise Moment Resisting Frames (MRF) with Welded Flange Plate (WFP) beam-column detailing. To evaluate the seismic performance of WFP connection of I-beam to BD-I column, traditional and modified exterior MRF connections were tested subjected to cyclic prescribed loading of AISC. Test results indicate that the traditional connection does not achieve the intended behavior while the modified connection can moderately meet the requirements of MRF connection. The numerical models of the connections were developed in ABAQUS finite element software and validated with the test results. For this purpose, moment-rotation curves and failure modes of the tested connections were compared with the simulation results. Moreover to avoid improper failure modes, some improvements of the connections were evaluated through a numerical study.

Static behavior of novel RCS through-column-type joint: Experimental and numerical study

  • Nguyen, Xuan Huy;Le, Dang Dung;Nguyen, Quang-Huy
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.111-126
    • /
    • 2019
  • This paper deals with experimental investigation and modeling of the static behavior of a novel RCS beam-column exterior joint. The studied joint detail is a through-column type in which an H steel profile totally embedded inside RC column is directly welded to the steel beam. The H steel profile was covered by two supplementary plates in the joint area in order to avoid the stirrups resisting shear in the joint area. Two full-scale through-column-type RCS joints were tested under static loading. The objectives of the tests were to examine the connection performance and to highlight the contribution of two supplementary plates on the shear resistance of the joint. A reliable nonlinear 3D finite element model was developed using ABAQUS software to predict the response and behavior of the studied RCS joint. An extensive parametric study was performed to investigate the influences of the stirrups, the encased profile length and supplementary plate length on the behavior of the studied RCS joint.

Shear strength formula of CFST column-beam pinned connections

  • Lee, Seong-Hui;Kim, Young-Ho;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.13 no.5
    • /
    • pp.409-421
    • /
    • 2012
  • Recently, as the height of building is getting higher, the applications of CFST column for high-rise buildings have been increased. In structural system of high-rise building, The RC core and exterior concrete-filled tubular (CFST) column-beam pinned connection is one of the structural systems that support lateral load. If this structural system is used, due to the minimal CFST column thickness compared to that of the CFST column width, the local moment occurred by the eccentric distance between the column flange surface from shear bolts joints degrades the shear strength of the CFST column-beam pinned connections. This study performed a finite element analysis to investigate the shear strength under eccentric moment of the CFST column-beam pinned connections. The column's width and thickness were used as variables for the analysis. To guarantee the reliability of the finite element analysis, an actual-size specimens were fabricated and tested. The yield line theory was used to formulate an shear strength formula for the CFT column-beam pinned connection. the shear strength formula was suggested through comparison on the results of FEM analysis, test and yield lime theory, the shear strength formula was suggested.

Seismic Response of Exterior RC Column-to-Steel Beam Connections (II. Strength and Deformation) (콘크리트 기둥-강재 보 외부 접합부의 내진성능(II 강도 및 변형))

  • 조순호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.283-289
    • /
    • 2000
  • The panel shear and bearing strengths determining the seismic resistance of reinforced concrete column-to-steel beam connections are predicted by various methods for four previously tested exterior beam-column joints. The analytical approach to model the joint deformation is also examined. Several analyses incorporating the deformations of panel shear and bearing in the joint are demonstrated using a analyses incorporating the deformations of panel shear and bearing in the joint are demonstrated using a fairly simple connection model in the commercial packages such as Drain2dx and IDARC. The strength prediction results indicated that the ASCE method with the modifcation of the comprssion strut contribution is th most accurate. It is also considered that the analytical model presented including the joint deformation can be used for the overall analysis

  • PDF

Application of Headed Bars with Small Head in Exterior Beam-Column Joints Subjected to Reversed Cyclic Loads (반복하중을 받는 외부 보-기둥 접합부에서 작은 헤드를 사용한 Headed Bar적용)

  • Ha, Sang-Su;Choi, Dong-Uk;Lee, Chang-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.411-420
    • /
    • 2007
  • The applicability of headed bars in exterior beam-column joints under reversed cyclic loading was investigated. A total of ten pullout tests were first performed to examine pullout behavior of headed bars subjected to monotonic and cyclic loading with test variables such as connection type between head and bar stem (weld or no weld), loading methods (monotonic or cyclic loading), and head shape (small or large circular head and square head). Two full-scale beam-column joint tests were then performed to compare the structural behavior of exterior beam-column joints constructed using two different reinforcement details: i.e. $90^{\circ}$ standard hooks and headed bars. Both joints were designed following the recommendations of ACI-ASCE Committee 352 for Type 2 performance: i.e. the connection is required to dissipate energy through reversals of deformation into inelastic range. The pullout test results revealed that welded head to the stem did not necessarily result in increased pullout strength when compared to non-welded head. Relatively large circular head resulted in higher peak load than smaller circular and square head. Both beam-column joints with conventional $90^{\circ}$ hooks and headed bars behaved similarly in terms of crack development, hysteresis curves, and peak strengths. The joint using the headed bars showed better overall structural performance in terms of ductility, deformation capacity, and energy dissipation. These experimental results demonstrate that the headed bars using relatively small head can be properly designed far use in external beam-column joint.

Application of ultra-high performance fiber reinforced concrete for retrofitting the damaged exterior reinforced concrete beam-column joints

  • Al-Osta, Mohammed A.;Khan, Muhammad I.;Bahraq, Ashraf A.;Xu, Shi-Yu
    • Earthquakes and Structures
    • /
    • v.19 no.5
    • /
    • pp.361-377
    • /
    • 2020
  • In the present research work, the effectiveness and the efficiency of a retrofitting approach using a layer of ultra-high performance fiber reinforced concrete (UHPFRC) jacket for damaged substandard exterior beam-column joints (BCJs) is experimentally investigated. The main objective of this study is to rehabilitate the already damaged BCJs to meet the serviceability requirements without compromising safety. According to the proposed strengthening technique, a chipped surface, lightly brushed with a dry condition was selected for making a successful bond between normal concrete substrate surface (NCSS) and UHPFRC. Then a fresh UHPFRC jacket with a thickness of 30 mm was cast around the damaged specimens. The entire test matrix was comprised of three 1/3 scale damaged exterior BCJs with a different column axial load (CAL). These specimens were repaired with UHPFRC and retested under monotonic loading. Based on the experimental results, repaired specimens showed an excellent performance in terms of their load-displacement response, maximum strength, displacement ductility, initial stiffness, secant stiffness and energy dissipation capacity when compared with the corresponding values registered when these specimens were tested in their virgin state. This rehabilitative intervention not only restored the strength, stiffness, ductility and energy dissipation capacity of severely damaged specimens but also improved their performance.

Stud reinforcement in beam-column joints under seismic loads

  • Abdollahzadeh, Gholamreza;Ghalani, Saeed Eilbeigi
    • Computers and Concrete
    • /
    • v.18 no.3
    • /
    • pp.297-317
    • /
    • 2016
  • Current codes recommend large amounts of shear reinforcement for reinforced concrete beam-column joints that causes significant bar congestion. Increase in congestion of shear reinforcement in joint core (connection zone), leads to increase accomplishment problems. The congestion may also lead to diameter limitations on the beam bars relative to the joint dimensions. Using double headed studs instead of conventional closed hoops in reinforced concrete beam-column joints reduces congestion and ensures easier assembly of the reinforcing cage. The purpose of this research is evaluating the efficiency of the proposed reinforcement. In this way, 10 groups of exterior beam-column joints are modeled. Each group includes 7 specimens by different reinforcing details in their joint core. All specimens are modeled by using of ABAQUS and analyzed subjected to cyclic loading. After verification of analytical modeling with an experimental specimen, 3D nonlinear specimens are modeled and analyzed. Then, the effect of amount and arrangement of headed studs on ductility, performance, ultimate strength and energy absorption has been studied. Based on the results, all joints reinforced with double headed studs represent better performance compared with the joints without shear transverse reinforcement in joints core. The behavior of the former is close to joints reinforced with closed hoops and cross ties according to the seismic design codes. By adjusting the arrangement of double-headed studs, the decrease in ductility, performance, ultimate moment resistant and energy absorption reduce to 2.61%, 0.90%, 0.90% and 1.66% respectively compared with the joints reinforced by closed hoops on the average. Since the use of headed studs reduces accomplishment problems, these amounts are negligible. Therefore, use of double-headed studs has proved to be a viable option for reinforcing exterior beam-column joints.

Structural Performance of Y Type Plate Connection between Circular CFT Column and H Shape Steel Beam (Y형 플레이트를 적용한 원형 CFT 기둥-H형강 보 접합부의 구조성능)

  • Jo, Hyun-Kook;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.112-118
    • /
    • 2015
  • These days, there are lots of skyscrapers being constructed in downtown areas. However, it requires columns which have a way heavier load. and far more extensive cross sections of column as well. Therefore, it is hard to lay the foundation in downtown areas. This being the case, composite columns such as CFT column are primarily being used. However, CFT column is occurred of difficult beam-column connection development and lower performance since CFT column is closed cross-section. Especially, the result of the study concerning development of connection details with CFT column and exterior diaphragms are very low in current state. In this study, through developing CFT column-H shape steel beam applicating Y shape plate, set width and depth of Y shape plate which affect structural performance of connection details applicating Y shape plate as main variables, and evaluate structural performance through experiments. And also, design Y shape plate used at experiments as setting allowable stress for tension suggested at design criteria lower than axial force of tension side flange connected Y shape plate, through shape of destruction, verify the structural safety and performance of Y shape plate.