• Title/Summary/Keyword: extensor digitorum longus muscle

Search Result 32, Processing Time 0.02 seconds

Effect of Endurance Exercise Training on Free Amino Acid Concentrations in Skeletal Muscles of Rats (지구성 운동훈련이 흰쥐의 하지 골격근 유리아미노산 조성에 미치는 영향)

  • 임현정;송영주;박태선
    • Journal of Nutrition and Health
    • /
    • v.35 no.10
    • /
    • pp.1031-1037
    • /
    • 2002
  • The purpose of present study was to evaluate the effect of endurance exercise training on skeletal muscle free amino acid concentrations, and differences in free amino acid concentration between soleus muscle which consists of mostly slow twitch oxidative fiber and extensor digitorum longus muscle which consists of fast twitch oxidative glycolytic fiber. Sixteen male SD rats (4 weeks old) were randomly devided into two groups, and fed a purified AIN-93M diet with or without aerobic exercise training according to the protocol (running on the treadmill at 25 m/min for 60 min, 5 days a week) for 6 weeks. Exercise-training for 6 weeks significanly reduced the commulative body weight gain (p<0.05) and food efficiency ratio (p<0.01) of rats. The result showing mitochondrial citrate synthase activity of soleus muscle was significantly higher in exercise-trained rats compared to the value for control animals (p<0.01) indicates aerobic exercise-training was successfully accomplished in the trained group. No difference was found in the muscle aminogram pattern between soleus muscle and extensor digitorum longus muscle of control animals. However, free amino acid concentrations of soleus muscle were from 1.2 to 3.9 times of those found in extensor digitorum longus muscle of control rats, depending on an individual amino acid. Intermediate level of endurance exercise training for 6 weeks did not influence concentrations of most of free amino acid in soleus muscle of rats collected at an overnight fasted and rested state. In contrast, isolucine and leucine concentrations in extensor digitorum longus muscle of exercise-trained rats were significantly lower than those for control animals. These results indicate that aerobic energy metabolism had not been efficiently conducted, and thereby the utilization of BCAA for energy substrate was enhanced in fast twitch oxidative glycolytic fibers of extensor digitorum longus muscle of rats followed exercise-training protocol for 6 weeks.

Aerobic Exercise Ameliorates Muscle Atrophy Induced by Methylglyoxal via Increasing Gastrocnemius and Extensor Digitorum Longus Muscle Sensitivity

  • Seong-Min Hong;Eun Yoo Lee;Jinho Park;Jiyoun Kim;Sun Yeou Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.573-582
    • /
    • 2023
  • Muscle atrophy is characterized by the loss of muscle function. Many efforts are being made to prevent muscle atrophy, and exercise is an important alternative. Methylglyoxal is a well-known causative agent of metabolic diseases and diabetic complications. This study aimed to evaluate whether methylglyoxal induces muscle atrophy and to evaluate the ameliorative effect of moderate-intensity aerobic exercise in a methylglyoxal-induced muscle atrophy animal model. Each mouse was randomly divided into three groups: control, methylglyoxal-treated, and methylglyoxal-treated within aerobic exercise. In the exercise group, each mouse was trained on a treadmill for 2 weeks. On the last day, all groups were evaluated for several atrophic behaviors and skeletal muscles, including the soleus, plantaris, gastrocnemius, and extensor digitorum longus were analyzed. In the exercise group, muscle mass was restored, causing in attenuation of muscle atrophy. The gastrocnemius and extensor digitorum longus muscles showed improved fiber cross-sectional area and reduced myofibrils. Further, they produced regulated atrophy-related proteins (i.e., muscle atrophy F-box, muscle RING-finger protein-1, and myosin heavy chain), indicating that aerobic exercise stimulated their muscle sensitivity to reverse skeletal muscle atrophy. In conclusion, shortness of the gastrocnemius caused by methylglyoxal may induce the dynamic imbalance of skeletal muscle atrophy, thus methylglyoxal may be a key target for treating skeletal muscle atrophy. To this end, aerobic exercise may be a powerful tool for regulating methylglyoxal-induced skeletal muscle atrophy.

Comparison of the Muscle Activity Ratio of Tibialis Anterior and Extensor Digitorum Longus in Subjects with the Normal Toe and the Hammer Toe during the Active Ankle Dorsiflexion (발목관절의 능동적 배측굴곡 시 정상과 망치 발가락 대상자의 전경골근과 장지신근의 근 활성도 비의 비교)

  • Koh, Eun-Kyung;Jung, Do-Young;Kim, Tae-Ho
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.6 no.1
    • /
    • pp.103-108
    • /
    • 2011
  • Purpose : The purposes of this study were to compare the muscle activity ratio of tibialis anterior (TA) / extensor digitorum longus (EDL) during the active ankle dorsiflexion in subjects with the normal toe (NT) and the hammer toe (HT). Methods : Nineteen subjects with the NT group and nineteen subjects with the HT group were recruited for this study. The muscle activities of TA and EDL were measured by using surface electromyography (EMG) and the angles of ankle dorsiflexion and eversion of the subtalar joint were measured by using 3-dementional motion analysis during the active ankle dorsiflexion in prone position. Results : The muscle activity ratio of TA / EDL was significantly lower in the HT group compared to the NT group (p<.05). The angle of ankle dorsiflexion was significantly lower in the HT group compared to the NT group (p<.05). Conclusions : These results suggest that muscle imbalance between TA and EDL muscle and decreased ankle dorsiflexion range of motion may contribute to hammer toe deformity. Further studies are needed to confirm that the correcting of this imbalance and the increasing ankle dorsiflexion could improve toe alignment in the subjects with HT.

Distally-extending muscle fibers across involved joints: study of long muscles and tendons of wrist and ankle in late-term fetuses and adult cadavers

  • Shaohe Wang;Shogo Hayashi;Zhe-Wu Jin;Ji Hyun Kim;Masahito Yamamoto;Gen Murakami;Shinichi Abe
    • Anatomy and Cell Biology
    • /
    • v.56 no.1
    • /
    • pp.46-53
    • /
    • 2023
  • It is unclear whether forearm and crural muscle fibers extend distally across the wrist and ankle joints, respectively. We hypothesized, in late-term fetuses, an over-production of muscle bellies extending over the joint. Muscle fibers in histological sections from unilateral wrists and ankles of 16 late-term fetuses (30-40 weeks) were examined and compared with 15 adult cadavers. Muscle fibers of the flexor digitorum profundus (FDP) and flexor digitorum superficialis (FDS) in fetuses, especially muscle bellies to the third and fourth fingers, were found to extend far distally beyond the radiocarpal joint. The extensor digitorum and extensor pollicis longus on the extensor side of the wrist were found to carry distally-extending muscle fibers, but these fibers did not extend beyond the distal end of the radius. In the ankle, most muscle bundles in the flexor hallucis longus (FHL), fibularis brevis (FB) and extensor digitorum longus extended distally beyond the talocrural joint, with most FB muscle fibers reaching the level of the talocalcaneal joint. In adult cadavers, muscle fibers of the FDP and FHL did not reach the levels of the radiocarpal and talocrural joints, respectively, whereas the FB muscle belly always reached the talocalcaneal joint. Similarly, some of the FDS reached the level of the radiocarpal joint. Generally, infants' movements at the wrist and ankle could result in friction injury to over-extended muscle. However, the calcaneal and FDP tendons might protect the FB and FDS tendons, respectively, from friction stress.

A Study on Muscular System of Foot Three Yang Meridian-Muscle (족삼양경근(足三陽經筋)의 근육학적(筋肉學的) 고찰(考察))

  • Lee, Myung-Sun;Hong, Seung-Won;Lee, Sang-Ryong
    • Korean Journal of Acupuncture
    • /
    • v.25 no.2
    • /
    • pp.1-32
    • /
    • 2008
  • Objectives : This study was performed to understand the interrelation between 'Foot three yang meridian-muscle' and 'muscular system'. Methods : We have researched some of the literatures on Meridian-muscle theory, anatomical muscular system, myofascial pain syndrome and anatomy trains. And especially we have compared myofascial pain syndrome to anatomy trains and researched what kind of relationship is exist between them. Results : It is considered that Foot taeyang meridian-muscle includes Abductor digiti minimi m., Gastrocnemius m., Biceps femoris m., Longissimus m., Omohyoid m., Occipital m., Frontal m., Orbicularis oculi m., Trapezius m., Sternocleidomastoid m., Sternohyoid m., Zygomaticus m. Foot soyang meridian-muscle includes Dorsal interosseus m., Tendon of extensor digitorum longus m., Extensor digitorum longus m., Iliotibial band, Vastus lateralis m., Piriformis m., Tensor fasciae latae m., Internal abdominal oblique m., External abdominal oblique m,, Internal intercostal m., External intercostal m., Pectoralis major m., Sternocleidomastoid m., Posterior auricular m., Temporal m., Masseter m., Orbicularis oculi m. Foot yangmyung meridian-muscle includes Extensor digitorum longus m., Vastus lateralis m., Iliotibial band, Iliopsoas m., Anterior tibial m., Rectus femoris m., Sartorius m., Rectus abdominis m., Pectoralis major m., Internal intercostal m., External intercostal m., Sternocleidomastoid m., Masseter m., Levator labii superioris m., Zygomatic major m., Zygomatic minor m., Orbicularis oculi m., Buccinator m. and the symptoms of Foot three yang meridian-muscle are similar to the myofascial pain syndrome. Superficial back line in anatomy trains is similar to the pathway of Foot taeyang meridian-muscle. Lateral Line in anatomy trains is similar to the pathway of Foot soyang meridian-muscle. Superficial Front Arm Line in anatomy trains is similar to the pathway of Foot yangmyung meridian-muscle. Conclusions : There is some difference between myofascial pain syndrome and meridian-muscle theory in that the former explains each muscle individually, while the latter classifies muscular system in the view of integrated organism. More studies are needed in anatomy and physiology to support the integration of muscular system of Foot three yang meridian-muscle in aspect of anatomy trains.

  • PDF

A study on muscular system of Foot yangmyung meridian-muscle (족양명경근(足陽明經筋)의 근육학적(筋肉學的) 고찰(考察))

  • Song, Jong-Keun;Yim, Yun-Kyoung
    • Korean Journal of Acupuncture
    • /
    • v.23 no.2
    • /
    • pp.39-46
    • /
    • 2006
  • Objective & Methods: This study is performed to understand the interrelation between 'Foot yangmyung meridian-muscle' and 'muscular system'. We studied the literatures on Meridian-muscle theory, anatomical muscular system, myofascial pain syndrome and the theory of anatomy trains. Results & Conclusion: 1. It is considered that Foot yangmyung meridian-muscle includes extensor digitorum longus m., tibialis anterior m., quadriceps femoris m., rectus abdominis m., pectoralis major m., sternocleidomastoid m., platysma m., orbicular oris m., zygomaticus major m., zygomaticus minor m., masseter m., Gluteus medius m., and Obliquus externus abdominis m. 2. The symptoms of Foot yangmyung meridian-muscle are similar to the myofascial pain syndrome with referred pain of extensor digitorum longus m., tibialis anterior m., quadriceps femoris m., rectus abdominis m., obliquus abdominis m., masseter m. 3. Superficial frontal line in anatomy trains is similar to the pathway of Foot yangmyung meridian-muscle, and more studies are needed in anatomy and physiology to support the continuity of muscular system of Foot yangmyung meridian-muscle in aspect of anatomy trains.

  • PDF

Study on the Anatomical Pericardium Meridian Muscle in Human (수궐음 심포경근의 해부학적 고찰)

  • Park, Kyoung-Sik
    • Korean Journal of Acupuncture
    • /
    • v.22 no.1
    • /
    • pp.67-74
    • /
    • 2005
  • Objectives : This study was carried to identify the component of the Pericardium Meridian Muscle in human. Methods : The regional muscle group was divided into outer, middle, and inner layer. The inner part of body surface were opened widely to demonstrate muscles, nerve, blood vessels and to expose the inner structure of the Pericardium Meridian Muscle in the order of layers. Results We obtained the results as follows; He Perfcardium Meridian Muscle composed of the muscles, nerves and blood vessels. In human anatomy, it is present the difference between terms (that is, nerves or blood vessels which control the muscle of the Pericardium Meridian Muscle and those which pass near by the Pericardium Meridian Muscle). The inner composition of the Pericardium Meridian Muscle in human is as follows ; 1) Muscle P-1 : pectoralis major and minor muscles, intercostalis muscle(m.) P-2 : space between biceps brachialis m. heads. P-3 : tendon of biceps brachialis and brachialis m. P-4 : space between flexor carpi radialis m. and palmaris longus m. tendon(tend.), flexor digitorum superficialis m., flexor digitorum profundus m. P-5 : space between flexor carpi radialis m. tend. and palmaris longus m. tend., flexor digitorum superficialis m., flexor digitorum profundus m. tend. P-6 : space between flexor carpi radialis m. tend. and palmaris longus m. tend., flexor digitorum profundus m. tend., pronator quadratus m. H-7 : palmar carpal ligament, flexor retinaculum, radiad of flexor digitorum superficialis m. tend., ulnad of flexor pollicis longus tend. radiad of flexor digitorum profundus m. tend. H-8 : palmar carpal ligament, space between flexor digitorum superficialis m. tends., adductor follicis n., palmar interosseous m. H-9 : radiad of extensor tend. insertion. 2) Blood vessel P-1 : lateral cutaneous branch of 4th. intercostal artery, pectoral br. of Ihoracoacrornial art., 4th. intercostal artery(art) P-3 : intermediate basilic vein(v.), brachial art. P4 : intermediate antebrachial v., anterior interosseous art. P-5 : intermediate antebrarhial v., anterior interosseous art. P-6 : intermediate antebrachial v., anterior interosseous art. P-7 : intermediate antebrachial v., palmar carpal br. of radial art., anterior interosseous art. P-8 : superficial palmar arterial arch, palmar metacarpal art. P-9 : dorsal br. of palmar digital art. 3) Nerve P-1 : lateral cutaneous branch of 4th. intercostal nerve, medial pectoral nerve, 4th. intercostal nerve(n.) P-2 : lateral antebrachial cutaneous n. P-3 : medial antebrachial cutaneous n., median n. musrulocutaneous n. P-4 : medial antebrachial cutaneous n., anterior interosseous n. median n. P-5 : median n., anterior interosseous n. P-6 : median n., anterior interosseous n. P-7 : palmar br. of median n., median n., anterior interosseous n. P-8 : palmar br. of median n., palmar digital br. of median n., br. of median n., deep br. of ulnar n. P-9 : dorsal br. of palmar digital branch of median n. Conclusions : This study shows some differences from already established study on meridian Muscle.

  • PDF

Anatomy of Large Intestine Meridian Muscle in human (수양명경근(手陽明經筋)의 해부학적(解剖學的) 고찰(考察))

  • Sim Young;Park Kyoung-Sik;Lee Joon-Moo
    • Korean Journal of Acupuncture
    • /
    • v.19 no.1
    • /
    • pp.15-23
    • /
    • 2002
  • This study was carried to identify the component of Large Intestine Meridian Muscle in human, dividing into outer, middle, and inner part. Brachium and antebrachium were opened widely to demonstrate muscles, nerve, blood vessels and the others, displaying the inner structure of Large Intestine Meridian Muscle. We obtained the results as follows; 1. Meridian Muscle is composed of the muscle, nerve and blood vessels. 2. In human anatomy, it is present the difference between a term of nerve or blood vessels which control the muscle of Meridian Muscle and those which pass near by Meridian Muscle. 3. The inner composition of meridian muscle in human arm is as follows. 1) Muscle; extensor digitorum tendon(LI-1), lumbrical tendon(LI-2), 1st dosal interosseous muscle(LI-3), 1st dosal interosseous muscle and adductor pollicis muscle(LI-4), extensor pollicis longus tendon and extensor pollicis brevis tendon(LI-5), adductor pollicis longus muscle and extensor carpi radialis brevis tendon(LI-6), extensor digitorum muscle and extensor carpi radialis brevis mucsle and abductor pollicis longus muscle(LI-7), extensor carpi radialis brevis muscle and pronator teres muscle(LI-8), extensor carpi radialis brevis muscle and supinator muscle(LI-9), extensor carpi radialis longus muscle and extensor carpi radialis brevis muscle and supinator muscle(LI-10), brachioradialis muscle(LI-11), triceps brachii muscle and brachioradialis muscle(LI-12), brachioradialis muscle and brachialis muscle(LI-13), deltoid muscle(LI-14, LI-15), trapezius muscle and supraspinous muscle(LI-16), platysma muscle and sternocleidomastoid muscle and scalenous muscle(LI-17, LI-18), orbicularis oris superior muscle(LI-19, LI-20) 2) Nerve; superficial branch of radial nerve and branch of median nerve(LI-1, LI-2, LI-3), superficial branch of radial nerve and branch of median nerve and branch of ulna nerve(LI-4), superficial branch of radial nerve(LI-5), branch of radial nerve(LI-6), posterior antebrachial cutaneous nerve and branch of radial nerve(LI-7), posterior antebrachial cutaneous nerve(LI-8), posterior antebrachial cutaneous nerve and radial nerve(LI-9, LI-12), lateral antebrachial cutaneous nerve and deep branch of radial nerve(LI-10), radial nerve(LI-11), lateral antebrachial cutaneous nerve and branch of radial nerve(LI-13), superior lateral cutaneous nerve and axillary nerve(LI-14), 1st thoracic nerve and suprascapular nerve and axillary nerve(LI-15), dosal rami of C4 and 1st thoracic nerve and suprascapular nerve(LI-16), transverse cervical nerve and supraclavicular nerve and phrenic nerve(LI-17), transverse cervical nerve and 2nd, 3rd cervical nerve and accessory nerve(LI-18), infraorbital nerve(LI-19), facial nerve and infraorbital nerve(LI-20). 3) Blood vessels; proper palmar digital artery(LI-1, LI-2), dorsal metacarpal artery and common palmar digital artery(LI-3), dorsal metacarpal artery and common palmar digital artery and branch of deep palmar aterial arch(LI-4), radial artery(LI-5), branch of posterior interosseous artery(LI-6, LI-7), radial recurrent artery(LI-11), cephalic vein and radial collateral artery(LI-13), cephalic vein and posterior circumflex humeral artery(LI-14), thoracoacromial artery and suprascapular artery and posterior circumflex humeral artery and anterior circumflex humeral artery(LI-15), transverse cervical artery and suprascapular artery(LI-16), transverse cervical artery(LI-17), SCM branch of external carotid artery(LI-18), facial artery(LI-19, LI-20)

  • PDF

Reconstruction of Hand Dorsum Defect Using Double Perforators-Based Anterior Interosseous Artery Island Flap: A Case Report and Description of a New Anterior Interosseous Artery Perforator

  • Inho Kang;Hyun Rok Lee;Gyu Yong Jung;Joon Ho Lee
    • Archives of Plastic Surgery
    • /
    • v.50 no.4
    • /
    • pp.409-414
    • /
    • 2023
  • The anterior interosseous artery (AIA) perforator flap is not commonly used in hand dorsum reconstruction compared with alternatives. However, it is a versatile flap with several advantages. Literature on the AIA perforator flap is based on the dorsal septocutaneous branch (DSB), which branches from the AIA and passes through fascia between the extensor pollicis longus (EPL) and extensor pollicis brevis muscles. In the described case, the authors reconstructed a hand dorsum defect in a 78-year-old man using an AIA perforator flap with double perforators supplied by the DSB and a new perforator branching from the distal than DSB. No complication was encountered, and the flap survived completely. A retrospective computed tomography review revealed the presence of the new perforator in 14 of 21 patients. Two types of new perforator were observed. One passed through the ulnar side of the extensor indicis proprius (EIP) muscle and penetrated fascia between the extensor digitorum minimi and extensor digitorum communis tendons, whereas the other passed between the EPL and EIP muscles. This report describes the anatomical location and clinical application of the new AIA perforators. The double perforators-based AIA flap provides a straightforward, reliable means of reconstructing hand dorsum defects.

Response of masticatory muscles to passive stretch stimulus - from perspectives of functional appliances

  • Pae, Eung-Kwon
    • The korean journal of orthodontics
    • /
    • v.42 no.2
    • /
    • pp.64-72
    • /
    • 2012
  • Objective: The aims of this study were to examine whether a passive stretch stimulus by means of a functional appliance induces changes in the fiber composition of masticatory muscles and whether these changes are similar to the changes in stretched limb muscle fibers by using RT-PCR, western blot, and immunohistochemical assays. Methods: Five male New Zealand White rabbits were fitted with a prefabricated inclined plane on the maxillary central incisors to force the mandible forward (- 2 mm) and downward (- 4 mm). Further, 1 hind limb was extended and constrained with a cast so that the extensor digitorum longus (EDL) was stretched when the animal used the limb. The animals were sacrificed aft er 1 week and the masseter, lateral pterygoid, and EDL were processed and compared with those from control animals (n = 3). Results: The stretched EDL had a significantly higher percentage of slow fibers, whereas the stretched masticatory muscles did not show changes in the composition of the major contractile proteins aft er 7 days. Conclusions: The transition of fiber phenotypes in response to a stretch stimulus may take longer in the masticatory muscles than in the limb muscles.