• Title/Summary/Keyword: extended Drude model

Search Result 3, Processing Time 0.016 seconds

Low-energy interband transition effects on extended Drude model analysis of optical data of correlated electron system

  • Hwang, Jungseek
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.6-12
    • /
    • 2019
  • Extended Drude model has been used to obtain information of correlations from measured optical spectra of strongly correlated electron systems. The optical self-energy can be defined by the extended Drude model formalism. One can extract the optical self-energy and the electron-boson spectral density function from measured reflectance spectra using a well-developed usual process, which is consistent with several steps including the extended Drude model and generalized Allen's formulas. Here we used a reverse process of the usual process to investigate the extended Drude analysis when an additional low-energy interband transition is included. We considered two typical electron-boson spectral density model functions for two different (normal and d-wave superconducting) material states. Our results show that the low-energy interband transition might give significant effects on the electron-boson spectral density function obtained using the usual process. However, we expect that the low-energy interband transition can be removed from measured spectra in a proper way if the transition is well-defined or well-known.

An analysis method of reflectance spectra of strongly correlated electron systems

  • Hwang, Jungseek
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.14-18
    • /
    • 2013
  • We introduce a generic method to analyze optical 17reflectance spectra of strongly correlated electron systems including high-temperature superconductors by using an extended Drude model and Allen's approach. We explain the process step by step from reflectance through the optical conductivity and the scattering rate to the bosonic spectral function. Through the process we are able to get important information on the interactions between charge carriers from measured optical conductivity of the strongly correlated electron systems including copper oxide and iron pnitide high temperature superconductors.

Extended Drude model analysis of n-doped cuprate, Pr0.85LaCe0.15CuO4

  • Lee, Seokbae;Song, Dongjoon;Jung, Eilho;Roh, Seulki;Kim, Changyoung;Hwang, Jungseek
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.4
    • /
    • pp.16-20
    • /
    • 2015
  • We investigated optical properties of an electron-doped copper oxide high temperature superconductor, $Pr_{0.85}LaCe_{0.15}CuO_4$ (PLCCO) single crystal. We obtained the optical conductivity from measured reflectance at various temperatures. We found our data contained c-axis longitudinal optical (LO) phonon modes due to miscut and intrinsic lattice distortion. We applied an extended Drude model to study the correlations between charge carriers in the system. The LO phonons appear as strong sharp peaks in the optical scattering rate. We tried to remove the LO phonon modes by using the energy loss function, which also shows the LO phonons as peaks, and could not remove them completely. We extracted the electron-boson spectral density function using a generalized Allen's formula. We observed that the resulting electron-boson density show similar temperature dependence as hole-doped cuprates.