• Title/Summary/Keyword: expression profile

Search Result 591, Processing Time 0.023 seconds

Osteoblastic behavior to zirconium coating on Ti-6Al-4V alloy

  • Lee, Bo-Ah;Kim, Hae-Jin;Xuan, Yun-Ze;Park, Yeong-Joon;Chung, Hyun-Ju;Kim, Young-Joon
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.512-520
    • /
    • 2014
  • PURPOSE. The purpose of this study was to assess the surface characteristics and the biocompatibility of zirconium (Zr) coating on Ti-6Al-4V alloy surface by radio frequency (RF) magnetron sputtering method. MATERIALS AND METHODS. The zirconium films were developed on Ti-6Al-4V discs using RF magnetron sputtering method. Surface profile, surface composition, surface roughness and surface energy were evaluated. Electrochemical test was performed to evaluate the corrosion behavior. Cell proliferation, alkaline phosphatase (ALP) activity and gene expression of mineralized matrix markers were measured. RESULTS. SEM and EDS analysis showed that zirconium deposition was performed successfully on Ti-6Al-4V alloy substrate. Ti-6Al-4V group and Zr-coating group showed no significant difference in surface roughness (P>.05). Surface energy was significantly higher in Zr-coating group than in Ti-6Al-4V group (P<.05). No difference in cell morphology was observed between Ti-6Al-4V group and Zr-coating group. Cell proliferation was higher in Zr-coating group than Ti-6Al-4V group at 1, 3 and 5 days (P<.05). Zr-coating group showed higher ALP activity level than Ti-6Al-4V group (P<.05). The mRNA expressions of bone sialoprotein (BSP) and osteocalcin (OCN) on Zr-coating group increased approximately 1.2-fold and 2.1-fold respectively, compared to that of Ti-6Al-4V group. CONCLUSION. These results suggest that zirconium coating on Ti-6Al-4V alloy could enhance the early osteoblast responses. This property could make non-toxic metal coatings on Ti-6Al-4V alloy suitable for orthopedic and dental implants.

A Comprehensive Identification of Synaptic Vesicle Proteins in Rat Brains by cRPLC/MS-MS and 2DE/MALDI-TOF-MS

  • Lee, Won-Kyu;Kim, Hye-Jung;Min, Hye-Ki;Kang, Un-Beom;Lee, Cheol-Ju;Lee, Sang-Won;Kim, Ick-Young;Lee, Seung-Taek;Kwon, Oh-Seung;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1499-1509
    • /
    • 2007
  • Proteomic analyses of synaptic vesicle fraction from rat brain have been performed for the better understanding of vesicle regulation and signal transmission. Two different approaches were applied to identify proteins in synaptic vesicle fraction. First, the isolated synaptic vesicle proteins were treated with trypsin, and the resulting peptides were analyzed using a high-pressure capillary reversed phase liquid chromatography/tandem mass spectrometry (cRPLC/MS/MS). Alternatively, proteins were separated by two-dimensional gel electrophoresis (2DE) and identified by matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF/MS). Total 18 and 52 proteins were identified from cRPLC/MS-MS and 2DE-MALDI-TOF-MS analysis, respectively. Among them only 2 proteins were identified by both methods. Of the proteins identified, 70% were soluble proteins and 30% were membrane proteins. They were categorized by their functions in vesicle trafficking and biogenesis, energy metabolism, signal transduction, transport and unknown functions. Among them, 27 proteins were not previously reported as synaptic proteins. The cellular functions of unknown proteins were estimated from the analysis of domain structure, expression profile and predicted interaction partners.

A Study on the Reliability Prediction for Space Systems (우주 시스템의 신뢰성 예측에 관한 연구)

  • Yu, Seung-U;Lee, Baek-Jun;Jin, Yeong-Gwon
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.227-239
    • /
    • 2006
  • Reliability prediction provides a rational basis for design decisions such as the choice between alternative concepts, choice of part quality levels, derating factors to be applied, use of proven versus state-of-the-art techniques, and other factors. For this reasons, reliability prediction is essential functions in developing space systems. The worth of the quantitative expression lies in the information conveyed with the numerical value and the use which is made of that information and reliability prediction should be initiated early in the configuration definition stage to aid in the evaluation of the design and to provide a basis for item reliability allocation (apportionment) and establishing corrective action priorities. Reliability models and predictions are updated when there is a significant change in the item design availability of design details, environmental requirements, stress data, failure rate data, or service use profile. In this paper, the procedure, selection of reliability data and methods for space system reliability prediction is presented.

  • PDF

Iterative Cumulant Moment Method for solution of Boltzmann Equation and its Application to Shock Wave Structure (반복적 Cumulant 모멘트 방법에 의한 Boltzmann 방정식의 해법과 충격파구조에 관한 연구)

  • Ohr, Young Gie
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.4
    • /
    • pp.398-410
    • /
    • 1998
  • For non-linear solution of the Boltzmann equation, the cumulant moment method has been studied. To apply the method to the normal shock wave problem, we restricted ourselves to the monatomic Maxwell molecular gases. The method is based on the iterative approach developed by Maxwell-Ikenberry-Truesdell (MIT). The original MIT approach employs the equilibrium distribution function for the initial values in beginning the iteration. In the present work, we use the Mott-Smith bimodal distribution function to calculate the initial values and follow the MIT iteration procedure. Calculations have been carried out up to the second iteration for the profiles of density, temperature, stress, heat flux, and shock thickness of strong shocks, including the weak shock thickness of Mach range less than 1.4. The first iteration gives a simple analytic expression for the shock profile, and the weak shock thickness limiting law which is in exact accord with the Navier-Stokes theory. The second iteration shows that the calculated strong shock profiles are consistent with the Monte Carlo values quantitatively.

  • PDF

Anti-obesity Effects of Black Soybean Doenjang in C57BL/6 Mice (고지방식이로 유도된 비만 마우스에서 검정콩 된장의 항비만 효과)

  • Kim, Jiyoung
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1486-1493
    • /
    • 2017
  • Doenjang is a traditional korean fermented soybean paste made from meju (fermented soybean), which are fermented by diverse microorganisms including Bacillus subtilis and molds such as Rizopus, Mucor, and Aspergillus species The purpose of this study was to investigate the antiobesity effect of the black soybean doenjang (Korean fermented soybean pastes) in C57BL/6 mice. The anti-obesity effect was determined by measuring the release of adiponectin, leptin and adipogenic transcription factors by using reverse transcription-polymerase chain reaction and western blot. Weight gain was significantly reduced in the mice fed high fat diets (HFD) plus black soybean doenjang (HBD) compared to HFD mice. The HBD were also effective in improving the lipid profile. They significantly decreased the levels of serum triglyceride and cholesterol. In addition, they had a significantly down regulated impact on antiobesity factors; leptin level and increased adiponectin level. Also, mRNA and protein expression of two adipogenic transcription factors, SREBP-1c and $PPAR-{\gamma}$, in high fat with black soybean fed mice were markedly down regulated. These results indicate that the black soybean doenjang potentiates an anti-obesity effect by modulating lipid metabolism, thereby inhibiting adipogenic transcriptional activation.

The effect on gene expression profile of rat hippocampus caused by administration of memory enhancing herbal extract (육미지황탕가미방(六味地黃湯加味方)이 흰쥐의 기억능력과 중추신경계 유전자 발현에 미치는 영향)

  • Choi, Bo-Eop
    • Korean Journal of Oriental Medicine
    • /
    • v.8 no.1
    • /
    • pp.109-126
    • /
    • 2002
  • The herbal extract (YMT_02) is a modified herbal extracts from Yukmijihwangtang (YMJ) to promote memory-enhancing. The YMJ extracts has been widely used as an anti-aging herbal medicine for hundred years in Asian countries. The purpose of this study is to; 1) quantitatively evaluate the memory-enhancing effect of YMT_02 by hehavior task, 2) identify candidate genes responsible for enhancing memory by cDNA microarray and 3) assess the anti-oxidant effect of YMT_02 on PC12 cell. Memory retention abilities are addressed by passive avoidance task with Sprague-Dawley (SD) male rat. Before the training session, the rats are subdivided into four groups and administrated with YMT_02, Ginkgo biloba, Soya lecithin and normal saline for 10 days. The retention test was performed. 24 hours after the training session. The retention time of the YMT_02 group was significantly (p<0.05) delayed $({\sim}100%)$, whereas Ginkgo biloba and Soya lecithin treatment delayed 20% and 10% respectively. The hippocampi of YMT_02 and control group were dissected and mRNA was further purified. After synthesizing cDNA using oligo-dT primer, the cDNA were applied and mRNA was further purified. After synthesizing cDNA using oligo-dT primer, the cDNA were applied to Incyte rat GEMTM 2 cDNA microarray. The microarray results show that prealbumin(transthyretin), phosphotidy lethanolamine N-methyltransferase, and PEP-19 are expressed abundantly in the YMT_02 treated group. Especially, PEP-19 is a neuron-specific protein, which inhibits apoptotic processes in neuronal cell. On the other hand, transcripts of RAB15, glutamate receptor subunit 2 and CDK 108 are abundant in control group. Besides, neuronal genes involved in neuronal death or neurodegeneration such as neuronal-pentraxin and spectrin are abundantly expressed in control group. Additionally, the YMT_02 shows an anti oxidative effect in the PC12 cell. The list of differentially expressed genes may implicate further insight on the action and mechanism behind the memory-enhancing effect of herbal extracts YMT_02, for example, anti-apoptotic, anti-oxidative, and neuroprotective effects.

  • PDF

Antibacterial Mode of Action of Cinnamomum verum Bark Essential Oil, Alone and in Combination with Piperacillin, Against a Multi-Drug-Resistant Escherichia coli Strain

  • Yap, Polly Soo Xi;Krishnan, Thiba;Chan, Kok-Gan;Lim, Swee Hua Erin
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1299-1306
    • /
    • 2015
  • This study aims to investigate the mechanism of action of the cinnamon bark essential oil (CB), when used singly and also in combination with piperacillin, for its antimicrobial and synergistic activity against beta-lactamase TEM-1 plasmid-conferred Escherichia coli J53 R1. Viable count of bacteria for this combination of essential oil and antibiotic showed a complete killing profile at 20 h and further confirmed its synergistic effect by reducing the bacteria cell numbers. Analysis on the stability of treated cultures for cell membrane permeability by CB when tested against sodium dodecyl sulfate revealed that the bacterial cell membrane was disrupted by the essential oil. Scanning electron microscopy observation and bacterial surface charge measurement also revealed that CB causes irreversible membrane damage and reduces the bacterial surface charge. In addition, bioluminescence expression of Escherichia coli [pSB1075] and E. coli [pSB401] by CB showed reduction, indicating the possibility of the presence of quorum sensing (QS) inhibitors. Gas-chromatography and mass spectrometry of the essential oil of Cinnamomum verum showed that trans-cinnamaldehyde (72.81%), benzyl alcohol (12.5%), and eugenol (6.57%) were the major components in the essential oil. From this study, CB has the potential to reverse E. coli J53 R1 resistance to piperacillin through two pathways; modification in the permeability of the outer membrane or bacterial QS inhibition.

GIGANTEA Regulates the Timing Stabilization of CONSTANS by Altering the Interaction between FKF1 and ZEITLUPE

  • Hwang, Dae Yeon;Park, Sangkyu;Lee, Sungbeom;Lee, Seung Sik;Imaizumi, Takato;Song, Young Hun
    • Molecules and Cells
    • /
    • v.42 no.10
    • /
    • pp.693-701
    • /
    • 2019
  • Plants monitor changes in day length to coordinate their flowering time with appropriate seasons. In Arabidopsis, the diel and seasonal regulation of CONSTANS (CO) protein stability is crucial for the induction of FLOWERING LOCUS T (FT) gene in long days. FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) and ZEITLUPE (ZTL) proteins control the shape of CO expression profile antagonistically, although regulation mechanisms remain unknown. In this study, we show that GIGANTEA (GI) protein modulates the stability and nuclear function of FKF1, which is closely related to the stabilization of CO in the afternoon of long days. The abundance of FKF1 protein is decreased by the gi mutation, but increased by GI overexpression throughout the day. Unlike the previous report, the translocation of FKF1 to the nucleus was not prevented by ZTL overexpression. In addition, the FKF1-ZTL complex formation is higher in the nucleus than in the cytosol. GI interacts with ZTL in the nucleus, implicating the attenuation of ZTL activity by the GI binding and, in turn, the sequestration of FKF1 from ZTL in the nucleus. We also found that the CO-ZTL complex presents in the nucleus, and CO protein abundance is largely reduced in the afternoon by ZTL overexpression, indicating that ZTL promotes CO degradation by capturing FKF1 in the nucleus under these conditions. Collectively, our findings suggest that GI plays a pivotal role in CO stability for the precise control of flowering by coordinating balanced functional properties of FKF1 and ZTL.

Identification of plasma miRNA biomarkers for pregnancy detection in dairy cattle

  • Lim, Hyun-Joo;Kim, Hyun Jong;Lee, Ji Hwan;Lim, Dong Hyun;Son, Jun Kyu;Kim, Eun-Tae;Jang, Gulwon;Kim, Dong-Hyeon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.35-44
    • /
    • 2021
  • A pregnancy diagnosis is an important standard for control of livestock's reproduction in paricular dairy cattle. High reproductive performance in dairy animals is a essential condition to realize of high life-time production. Pregnancy diagnosis is crucial to shortening the calving interval by enabling the farmer to identify open animals so as to treat or re-breed them at the earliest opportunity. MicroRNAs are short RNA molecules which are critically involved in regulating gene expression during both health and disease. This study is sought to establish the feasible of circulating miRNAs as biomarkers of early pregnancy in cattle. We applied Illumina small-RNA sequencing to profile miRNAs in plasma samples collected from 12 non-pregnant cows ("open" cows: samples were collected before insemination (non-pregnant state) and after pregnancy check at the indicated time points) on weeks 0, 4, 8, 12 and 16. Using small RNA sequencing we identified a total of 115 miRNAs that were differentially expressed weeks 16 relative to non-pregnancy ("open" cows). Weeks 8, 12 and 16 of pregnancy commonly showed a distinct increase in circulating levels of miR-221 and miR-320a. Through genome-wide analyses we have successfully profiled plasma miRNA populations associated with pregnancy in cattle. Their application in the field of reproductive biology has opened up opportunities for research communities to look for pregnancy biomarker molecules in dairy cattle.

Nitric oxide-Releasing Chitosan Nanoparticles; A Potential Impeding Strategy Against Salinity Stress in Arabidopsis thaliana

  • Waqas Rahim;Anjali Pande;Nusrat Jahan Methela;Da-Sol Lee;Bong-Gyu Mun;Hak-Yoon Kim;Byung-Wook Yun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.157-157
    • /
    • 2022
  • Plants being sessile are prone to various abiotic challenges, including salinity. Plants generally cope with salt stress by regulating their endogenous NO levels. NO exogenously applied in various forms also successfully impedes the salt stress, but its small size, short half life, and high volatility rate hamper its application in agriculture. NO application via CS as a nanocarrier is an alternate option to ensure the optimal kinetic release of NO for a long period compared to the free NO form. Herein, we synthesized and characterized GSNO-CS NP by ionic gelation of TPP with CS and then reacting with GSH, followed by reaction with NaNO2 suspension. The synthesized NPs were characterized using non-destructive analytical techniques such as DLS, FTIR, and SEM to ensure their synthesis and surface morphology. NO-release profile confirmed optimal kinetic NO release for 24 h from NO-CS NP as compared to free NO form. The efficiency of NO-CS NP was checked on Arabidopsis plants under salinity stress by gauging the morphological, physiological, and enzymatic antioxidant system and SOS pathway gene expression levels. Overall, the results revealed that NO-CS NP successfully mitigates salinity stress compared to free GSNO. Concluding, the findings provide sufficient experimental evidence for the application of nanotechnology to enhance NO delivery, thus inducing more benefits for the plants under stress conditions by mitigating the deleterious impacts of salt stress on the morphological and physiological status of the plants, and regulating the ions exchange by overexpression of SOS pathway candidate genes.

  • PDF