• Title/Summary/Keyword: expression of cat gene

Search Result 121, Processing Time 0.025 seconds

Green perilla leaf extract ameliorates long-term oxidative stress induced by a high-fat diet in aging mice

  • Edward, Olivet Chiamaka;Thomas, Shalom Sara;Cha, Kyung-Ok;Jung, Hyun-Ah;Han, Anna;Cha, Youn-Soo
    • Nutrition Research and Practice
    • /
    • v.16 no.5
    • /
    • pp.549-564
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Oxidative stress is caused by an imbalance between harmful free radicals and antioxidants. Long-term oxidative stress can lead to an "exhausted" status of antioxidant defense system triggering development of metabolic syndrome and chronic inflammation. Green perilla (Perilla frutescens) is commonly used in Asian cuisines and traditional medicine in southeast Asia. Green perilla possesses numerous beneficial effects including anti-inflammatory and antioxidant functions. To investigate the potentials of green perilla leaf extract (PE) on oxidative stress, we induced oxidative stress by high-fat diet (HFD) in aging mice. MATERIALS/METHODS: C57BL/6J male mice were fed HFD continuously for 53 weeks. Then, mice were divided into three groups for 12 weeks: a normal diet fed reference group (NDcon), high-fat diet fed group (HDcon), and high-fat diet PE treated group (HDPE, 400 mg/kg of body weight). Biochemical analyses of serum and liver tissues were performed to assess metabolic and inflammatory damage and oxidative status. Hepatic gene expression of oxidative stress and inflammation related enzymes were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: PE improved hepatopathology. PE also improved the lipid profiles and antioxidant enzymes, including hepatic glutathione peroxidase (GPx) and superoxide dismutase (SOD) and catalase (CAT) in serum and liver. Hepatic gene expressions of antioxidant and anti-inflammatory related enzymes, such as SOD-1, CAT, interleukin 4 (IL-4) and nuclear factor erythroid 2-related factor (Nrf2) were significantly enhanced by PE. PE also reduced the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the serum and liver; moreover, PE suppressed hepatic gene expression involved in pro-inflammatory response; Cyclooxygenase-2 (COX-2), nitric oxide synthase (NOS), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6). CONCLUSIONS: This research opens opportunities for further investigations of PE as a functional food and possible anti-aging agent due to its attenuative effects against oxidative stress, resulting from HFD and aging in the future.

Gene Cloning, Expression, and Characterization of a $\beta$-Agarase, AgaB34, from Agarivorans albus YKW-34

  • Fu, Xiao Ting;Pan, Cheol-Ho;Lin, Hong;Kim, Sang-Moo
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.257-264
    • /
    • 2009
  • A $\beta$-agarase gene, agaB34, was functionally cloned from the genomic DNA of a marine bacterium, Agarivorans albus YKW-34. The open reading frame of agaB34 consisted of 1,362 bp encoding 453 amino acids. The deduced amino acid sequence, consisting of a typical N-terminal signal peptide followed by a catalytic domain of glycoside hydrolase family 16 (GH-16) and a carbohydrate-binding module (CBM), showed 37-86% identity to those of agarases belonging to family GH-16. The recombinant enzyme (rAgaB34) with a molecular mass of 49 kDa was produced extracellularly using Escherichia coli $DH5{\alpha}$ as a host. The purified rAgaB34 was a $\beta$-agarase yielding neoagarotetraose (NA4) as the main product. It acted on neoagarohexaose to produce NA4 and neoagarobiose, but it could not further degrade NA4. The maximal activity of rAgaB34 was observed at $30^{\circ}C$ and pH 7.0. It was stable over pH 5.0-9.0 and at temperatures up to $50^{\circ}C$. Its specific activity and $k_{cat}/K_m$ value for agarose were 242 U/mg and $1.7{\times}10^6/sM$, respectively. The activity of rAgaB34 was not affected by metal ions commonly existing in seawater. It was resistant to chelating reagents (EDTA, EGTA), reducing reagents (DTT, $\beta$-mercaptoethanol), and denaturing reagents (SDS and urea). The E. coli cell harboring the pUC18-derived agarase expression vector was able to efficiently excrete agarase into the culture medium. Hence, this expression system might be used to express secretory proteins.

Expression of Cyclodextrinase Gene from Paenibacillus sp. A11 in Escherichia coli and Characterization of the Purified Cyclodextrinase

  • Kaulpiboon, Jarunee;Pongsawasdi, Piamsook
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.408-415
    • /
    • 2004
  • The expression of the Paenibacillus sp. A11 cyclodextrinase (CDase) gene using the pUC 18 vector in Escherichia coli JM 109 resulted in the formation of an insoluble CDase protein in the cell debris in addition to a soluble CDase protein in the cytoplasm. Unlike the expression in Paenibacillus sp. A11, CDase was primarily observed in cytoplasm. However, by adding 0.5 M sorbitol as an osmolyte, the formation of insoluble CDase was prevented while a three-fold increase in cytoplasmic CDase activity was achieved after a 24 h-induction. The recombinant CDase protein was purified to approximately 14-fold with a 31% recovery to a specific activity of 141 units/mg protein by 40-60% ammonium sulfate precipitation, DEAE-Toyopearl 650 M, and Phenyl Sepharose CL-4B chromatography. It was homogeneous by non-denaturing and SDS-PAGE. The enzyme was a single polypeptide with a molecular weight of 80 kDa, as determined by gel filtration and SDS-PAGE. It showed the highest activity at pH 7.0 and $40^{\circ}C$. The catalytic efficiency ($k_{cat}/K_m$) values for $\alpha$-, $\beta$-, and $\gamma$-CD were $3.0{\times}10^5$, $8.8{\times}10^5$, and $5.5{\times}10^5\;M^{-1}\;min^{-1}$, respectively. The enzyme hydrolyzed CDs and linear maltooligosaccharides to yield maltose and glucose with less amounts of maltotriose and maltotetraose. The rates of hydrolysis for polysaccharides, soluble starch, and pullulan were very low. The cloned CDase was strongly inactivated by N-bromosuccinimide and diethylpyrocarbonate, but activated by dithiothreitol. A comparison of the biochemical properties of the CDases from Paenibacillus sp. A11 and E. coli transformant (pJK 555) indicates that they were almost identical.

Enhancement of the solubility of human tissue inhibitor of matrix metallocroteinase-2 (TIMP-2) in E. coli using a modified in vitro mutagenesis (새로운 유전자 재조합 방법을 이용한 대장균에서의 인간 tissue inhibitor of mtrix metalloproteinase-2 (TIMP-2) 유전자의 가용성 발현)

  • Kim, Jong-Uk;Choi, Dong-Soon;Joo, Hyun;Min, Churl-K.
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.231-238
    • /
    • 2008
  • The second family member of tissue inhibitors of matrix metalloproteinases, TIMP-2, is a 21kDa protein which inhibits matrix metalloproteinases 2 (MMP-2). Expression of mammalian proteins in E. coli often forms inclusion bodies that are made up of mis-folded or insoluble protein aggregates. The requirement for the formation of 6 disulfide bonds in the process of the TIMP-2 folding is likely to be incompatible with the reducing environment of E. coli. However, this incompatibility can be often overcome by introducing a mutagenesis that could lead to enhancement of the protein solubility. In this reason, we have attempted to express the soluble TIMP-2 in E. coli by applying a modified staggered extension process (StEP), one of the in vitro PCR-based recombinant mutagenesis methods, and error-prone PCR. C-terminally located CAT fusion protein with respect to mutated TIMP-2 proteins enables us to differentiate the soluble TIMP-2 from the insoluble in E. coli by virtue of chloramphenicol resistance. According to this scheme, E. coli harboring properly-folded CAT fused to TIMP-2 protein was selected, and some of the resulting colonies exhibited an enhanced, soluble expression of TIMP-2 compared to the wild type, implying (i) the StEP technique is successfully employed to enhance the proper folding thereby increasing the solubility of TIMP-2, and (ii) the CAT dependent screening may be a simple and effective method to differentiate the soluble protein expression in E. coli.

Expression and Characterization of a Novel Nitrilase from Hyperthermophilic Bacterium Thermotoga maritima MSB8

  • Chen, Zhi;Chen, Huayou;Ni, Zhong;Tian, Rui;Zhang, Tianxi;Jia, Jinru;Yang, Shengli
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1660-1669
    • /
    • 2015
  • The present study describes the gene cloning, overexpression and characterization of a novel nitrilase from hyperthermophilic bacterium Thermotoga maritima MSB8. The nitrilase gene consisted of 804 base pairs, encoding a protein of 268 amino acid residues with a molecular mass of 30.07 kDa after SDS-PAGE analysis. The optimal temperature and pH of the purified enzyme were 45℃ and 7.5, respectively. The enzyme demonstrated good temperature tolerance, with 40% residual activity after 60 min of heat treatment at 75℃. The kinetic constants Vmax and Km of this nitrilase toward 3-cyanopyridine were 3.12 μmol/min/mg and 7.63 mM, respectively. Furthermore, this novel nitrilase exhibited a broad spectrum toward the hydrolysis of the aliphatic nitriles among the tested substrates, and particularly was specific to aliphatic dinitriles like succinonitrile, which was distinguished from most nitrilases ever reported. The catalytic efficiency kcat/Km was 0.44 /mM/s toward succinonitrile. This distinct characteristic might enable this nitrilase to be a potential candidate for industrial applications for biosynthesis of carboxylic acid.

Characterization in Terms of the NUX Rule of G-inserted Mutant Hammerhead Ribozymes with High Level of Catalytic Power

  • Kuwabara, Tomoko;Warashina, Masaki;Kato, Yoshio;Kawasaki, Hiroaki;Taira, Kazunari
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.51-58
    • /
    • 2001
  • Attempts using in vitro and in vivo selection procedures have been made to search for hammerhead ribozymes that have higher activities than the wild-type ribozyme and also to determine whether other sequences might be possible in the catalytic core of the hammerhead ribozyme. Active sequences selected in the past conformed broadly to the consensus core sequence except at A9, and no sequences were associated with higher activity than that of the hammerhead with the consensus core, an indication that the consensus sequence derived from viruses and virusoids is probably the optimal sequence [Vaish et al. (1997) Biochemistry 36, 6495-6501]. Recently, during construction of ribozyme expression vectors, we isolated a mutant hammerhead ribozyme, with an insertion of G between A9 and G10.1, that appeared to show significant activity [Kawasaki et al. (1996) Nucleic Acids Res. 24, 3010-3016; Kawasaki et al. (1998) Nature 393, 284-289]. We, therefore, characterized kinetic properties of the G-inserted mutant ribozymes in terms of the NUX rule. We demonstrate that the NUX rule is basically applicable to the G-inserted ribozymes and, more importantly, one type of G-inserted ribozyme was very active with $k_{cat}$, value of $6.4\;min^{-1}$ in 50 mM Tris-HCl (pH 8.0) and 10 mM $MgCl_2$ at $37^{\circ}C$.

  • PDF

Screening of Promoter Sequences from Lactic Acid Bacteria Using a Promoter-Selection Vector (Promoter-Selection Vector를 사용한 유산균 Promoter의 탐색)

  • 우승희;김갑석
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.504-509
    • /
    • 1996
  • Promoters which are useful for constructing expression vectors for lactic acid bacteria were obtained from the chromosomal DNA of Lactococcus lactis ssp. lactis MG1363. pBV5030, a promoter-selection vector, replicates in L. lactis and Escherichia coli and carries a promoterless chloramphenicol acetyltransferase gene (cat-86). After examining E. coli transformants which grew on LB media containing chloramphenicol (Cm, 20$\mu\textrm{g}$/mL) , many MG1363 derived DNA fragments which encompass promoter sequences were identified. Some recombinant E. coli cells can grow at the Cm concentration of 1,000$\mu\textrm{g}$/mL. When plasmids from those highly resistant E. coli cells were purified and introduced into L. lactis ssp. lactis MG1614 cells by electroporation, lactococcal transformants showing Cm resistance were obtained. So far, five plasmids with different promoter inserts were introduced into L. lactis MGl614 cells. The maximum level of Cm resistance in L. lactis MG1614 transformants was quite low (20$\mu\textrm{g}$/mL) when compared with that observed in recombinant E. coli cells harboring the same plasmids.

  • PDF

Loss of Specific Sequences in a Natural Variant of Potato Proteinase Inhibitor II Gene Results in a Loss of Wound-Inducible Gene Expression (감자의 단백질 분해효소 억제제 II 유전자의 특별한 염기서열의 자연적 제거로 인한 상처 유발성 발현의 소실)

  • Thornburg, Robert W.;Park, Sang-Gyu
    • Applied Biological Chemistry
    • /
    • v.39 no.2
    • /
    • pp.104-111
    • /
    • 1996
  • We have isolated several proteinase inhibitor II genes pin2 from a Russet Burbank potato DNA library. One of these, pin2T was subcloned and a 1.8 kb Xbal/Nsil insert was sequenced. This fragment contained the complete Inhibitor II gene including 965 Up of flanking DNA upstream from the gene and 200 bp of flanking DNA downstream from the gene. The open reading frame encodes a protein that is similar to other reported proteinase Inhibitor II proteins. The DNA sequence of the 5' flanking region of pin2T from -714 to +1 is highly homologous (91% identity) with that of the previously isolated wound-inducible pin2K. There are, however, four small deletions in the pin2T promoter which are located at -221 to -200, -263 to -254, -523 to -426 and -759 to -708 relative to the transcription start site of the wound-inducible pin2K. Three of these deletions map to a portion of the promoter that controls the wound-inducibility of the proteinase inhibitor genes. Chimeric genes containing the promoter of the pin2T gene linked with the both CAT and GUS were constructed and transfered into tobacco plants. Analysis of these plants indicated that pin2T is not a wound-inducible gene but is expressed at low levels. Thus, wound-inducibility is lost with the concomitant natural deletion of three small regions of the promoter. Comparision of the sequences deleted in pin2T relative to the pin2K with Genebank sequences indicates that the deleted sequences contain a motif (consensus 5'-AGTAAA-3') that is found in many other wound-inducible genes but not easily found in the published promoter sequences of other plant genes. Nuclear proteins from unwounded and wounded potato leaves were bound to the proximal promoter region, downstream of the 5'-AGTAAA-3', of pin2T. The comparison of the pin2T gone with the pin2K gene indicates that the natural internal promoter deletions are likely responsible for loss of the wound-inducible phenotype in the pin2T gene.

  • PDF

Transcriptional Regulation of the Murine Dopamine Receptor Regulating Factor (DRRF) Gene (생쥐 도파민 수용쳬 조절인자 (DRRF) 유전자의 전사조절)

  • Kim Ok Soo;Lee Young-Choon;Lee Sang-Hyeon
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.55-60
    • /
    • 2005
  • The murine dopamine receptor regulating factor (DRRF) gene is transcribed from a TATA-less promoter that has several putative Sp1 binding sites. The present investigation identifies functional transcription factors that modulate the expression of this gene, In the $D_2-expressing$ NB41A3 cells, Spl potently activates transcription from the DRRF promoter in pCAT-DRRF-1153/+17, but DRRF effectively inhibits it. Deletion of the 31 bp fragment between -1153 and -1122 decreased transcription down to about $60\%$. This fragment contains a functional API binding site. In addition, deletion of the 129 bp region between -901 and -772 further decreased transcription. The latter region has a functional AP2 binding site. Using a DRRF_AP1 (bases -1153 to -1121) probe, a specific retarded band was observed, and the unlabeled AP1 consensus competitor could effectively compete away this retarded band. In addition, using a DRRF_AP2 (bases -873 to -846), a specific retarded band was observed, and the unlabeled AP2 consensus competitor could effectively compete away this retarded band. The present observations suggest that Spl and DRRF regulate the DRRF promoter and that both API and AP2 also modulate this gene.