• Title/Summary/Keyword: expression in E. coli

Search Result 1,069, Processing Time 0.03 seconds

Increased Production of Recombinant Protein by Escherichia coli Deficient in Acetic Acid Formation

  • Koo, Tae-Young;Park, Tai-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.789-793
    • /
    • 1999
  • The effect of acetic acid formation deficiency on recombinant E. coli fermentation was investigated using a mutant strain deficient in acetic acid formation. A mutant strain which does not grow under anaerobic conditions was isolated. The acetic acid production in this strain was negligible in aerobic batch fermentation. The cloned-gene expression in the mutant strain was higher than the wild-type strain. Fed-batch fermentations with controlled specific growth rates were carried out in order to compare the cloned-gene expression between the wild-type and the mutant strains. The expression decreased along with the specific growth rate in both strains. The cloned-gene expression in the mutant strain was 60% higher than in the wild-type strain at the same specific growth rate.

  • PDF

Multimeric Expression of the Antimicrobial Peptide Buforin II in Escherichia coli by Fusion to a Cysteine-Rich Acidic Peptide

  • Lee, Jae-Hyun;Kim, Jeong-Hyun;Hong, Seung-Suh;Lee, Hyun-Soo;Kim, Sun-Chang
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.303-310
    • /
    • 1999
  • A cost-effective mass production method for a strong antimicrobial peptide, buforin II, which was isolated from the stomach of Bufo bufo gargarizans, has been developed. This method is based on the neutralization of the positive charge of buforin II by fusion with a cysteine-rich acidic peptide (CAP) to avoid any lethal effect on the host. The neutralized fusion peptide was multimerized and expressed in Escherichia coli as tandem repeats to increase the production yield. Multimers of the CAP-buforin II fusion peptide were successfully expressed at high levels in E. coli as inclusion bodies. More than 100mg of pure buforin II was obtained per 11 of E. coli culture after cleaving the multimeric polypeptide with CNBr. The buforin II obtained from the recombinant E. coli had antimicrobial activity identical to that of natural buforin II. The proposed expression system can provide a cost-effective mass production method for both antimicrobial peptides and other host-lethal basic proteins.

  • PDF

GroEL/ES Chaperone and Low Culture Temperature Synergistically Enhanced the Soluble Expression of CGTase in E. coli

  • Park, So-Lim;Kwon, Mi-Jung;Kim, Sung-Koo;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.216-219
    • /
    • 2004
  • The effect of culture temperature on the production of soluble form of B. macerans cyclodextrin glucanotransferase (CGTase) in recombinant E. coli was investigated. E. coli cell was cotransformed with two plasmids (pTCGT1 and pGroll) in which the cgt and groEL/ES genes are under the control of T7 promoter and pzt-1 promoter, respectively. When tetracycline (10 ng/ml) and IPTG (l mM) were added as inducers at the early-exponential phase (2 h) and mid-exponential phase (3h), respectively, the solubilization of the inclusion body CGTase was greatly dependent on the temperature of the culture. At low culture temperature of $25^\circ{C}$, 2- or 3-fold higher activity and specific activity were obtained over $37^\circ{C}$. SDS-PAGE analysis revealed that about 62% of CGTase in the total CGTase protein was found in the soluble fraction by applying overexpression of GroEL/ES chaperone and by cultivation of E. coli at $25^\circ{C}$, whereas 33% of CGTase was detected in the soluble fraction at $37^\circ{C}$. Therefore, the expression of GroEL/ES and cultivation at $25^\circ{C}$ greatly enhanced the soluble production of CGTase in E. coli.

Temperature Effect on the Functional Expression of Human Cytochromes P450 2A6 and 2E1 in Escherichia coli

  • Yim Sung-Kun;Ahn Taeho;Jung Heung-Chae;Pan Jae-Gu;Yun Chul-Ho
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.433-437
    • /
    • 2005
  • Human cytochromes P450 (GYP) 2A6 and 2E1 are of great interest because of their important roles in the oxidation of numerous drugs and carcinogens. Bacterial expression systems, especially Escherichia coli cells, have been widely used for the production of various GYP enzymes in order to obtain high yield of proteins. The expression methods usually employ longer culture time (30-72 h) at lower temperature (usually under $30^{\circ}C$). Expression levels of GYPs 2A6 and 2E1 at $37^{\circ}C$ were compared to those at $28^{\circ}C$, which is a usual temperature used in most bacterial expression systems for human GYP expression. Within 18 h the expression levels of GYPs 2A6 and 2E1 reached up to 360 and 560 nmol per liter culture at $37^{\circ}C$, respectively, which are compatible with those of 36 h culture at $28^{\circ}C$. The activities of GYPs expressed at $37^{\circ}C$ were also comparable to those expressed at $28^{\circ}C$. The present over-expression system can be useful for rapid production of large amounts of active human GYPs 2A6 and 2E1 in E. coli.

Expression of a Yeast Superkiller Gene(SK13) in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 효모 Superkiller 유전자(SK13)의 발현)

  • ;Wickner, Reed B.
    • Korean Journal of Microbiology
    • /
    • v.28 no.2
    • /
    • pp.114-119
    • /
    • 1990
  • A yeast chromosomal superkiller gene (SK13) was cloned and expressed in $ski3^{-}$ Saccharomyces cerevisiae strains. The gene was fused to the structural region of E. coli lacZ gene at its C-terminus in a yeast-E. coli shuttle vector, pSR605. The fused gene complemented $ski3^{-}$ strains with SK13 activity and the quantitative level of expression was measured as determined by assaying $\beta$-galactosidase activity. The SDS-polyacrylamide gel electrophoresis and the Western blot analysis of this fused protein showed the immuno-reacted bands with a protein of the estimated molecular size (ca.250Kd).

  • PDF

Effects of tktA, $aroF^{FBR}$and aroL Expression in the Tryptophan-Producing Escherichia coli

  • Kim, Tae-Hyun;Namgoong, Suk;Kwak, Joon-Hyeok;Lee, Se-Yong;Lee, Heung-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.789-796
    • /
    • 2000
  • In order to analyze the effects of tktA, $aroF^{FBR}$, and aroL expression in a tryptophan-producing Escherichia coli, a series of plasmids carrying the genes were constructed. Introduction of tktA, $aroF^{FBR}$, and aroL into the E. coli strain resulted in approximately 10-20 fold increase in the activities of transketolase, the feedback inhibition-resistant 3-deoxy-D-arabinoheptulsonate-7-phosphate synthase, and shikimate kinase. Expression of $aroF^{FBR}$ in the aroB mutant strain of E. coli resulted in the accumulation of 10 mM of 3-deoxy-D-arabinoheptulsonate-7-phosphate (DAHP) in the medium. Simultaneous expression of tktA and $aroF^{FBR}$ in the strain further increased the amount of excreted DAHP to 20 mM. In contrast, the mutant strain which has no gene introduced accumulated 0.5 mM of DAHP. However, the expression of tktA and $aroF^{FBR}$ in a tryptophan-producing E. coli strain did not lead to the increased production of tryptophan, but instead, a significant amount of shikimate, which is an intermediate in the tryptophan biosynthetic pathway, was excreted to the growth medium. Despite the fact that additional expression of shikimate kinase in the strain could possibly remove 90% of excreted shikimate to 0.1 mM, the amount of tryptophan produced was still unchanged. Removing shikimate using a cloned aroL gene caused the excretion of glutamate, which suggests disturbed central carbon metabolism. However, when cultivated in a complex medium, the strain expressing tktA, $aroF^{FBR}$, and aroL produced more tryptophan than the parental strain. These data indicate that additional rate-limiting steps are present in the tryptophan biosynthetic pathway, and the carbon flow to the terminal pathway is strictly regulated. Expressing tktA in E. coli cells appeared to impose a great metabolic burden to the cells as evidenced by retarded cell growth in the defined medium. Recombinant E. coli strains harboring plasmids which carry the tktA gene showed a tendency to segregate their plasmids almost completely within 24h.

  • PDF

Metabolic engineering for isoprenoids production in Escherichia coli

  • Kim, Seon-Won;Keasling, J.D.
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.70-73
    • /
    • 2001
  • Isopentenyl diphosphate (IPP) is the common, five-carbon building block in the biosynthesis of all isoprenoids. IPP in Escherichia coli is synthesized through the non-mevalonate pathway. The first reaction of IPP biosynthesis in E. coli is the formation of 1-deoxy-D-xylulose-5-phosphate(DXP), catalyzed by DXP synthase and encoded by dxs. The second reaction in the pathway is the reduction of DXP to 2-C-methyl-D-erythritol-4-phosphate, catalyzed by DXP reductoismerase and encoded by dxr. To determine if one of more of the reactions in the non-mevalonate pathway controlled flux to IPP, dxs and dxr were placed on several expression vectors under the control of three different promoters and transformed into three E. coli strains ($DH5{\alpha}$, XL1-Blue, and JM101) that had been engineered to produce lycopene, a kind of isoprenoids. Lycopene production was improved significantly in strains transformed with the dex expression vectors. At arabinose concentrations between 0 and 1.33 mM, cells expressiong both dxs and from $P_{BAD}$ on a midium-copy plasmid produced 1.4 -2.0 times more lycopene than cells expressing dxs only. However, at higher arabinose concentrations lycopene production in cell expressing both dxs and dxr was lower than in cells expression dxs only. A comparison of the three E. coli strains trasfomed with the arabinose-inducible dxs on a medium-copy plasmid revealed that lycopene production was highest in XL1-Blue.

  • PDF

Amygdalin Reverses Macrophage PANoptosis Induced by Drug-Resistant Escherichia coli

  • Xue Yan;Liang Jin;Huifen Zhou;Haofang Wan;Haitong Wan;Jiehong Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1281-1291
    • /
    • 2023
  • Infectious diseases caused by drug-resistant Escherichia coli (E. coli) pose a critical concern for medical institutions as they can lead to high morbidity and mortality rates. In this study, amygdalin exhibited anti-inflammatory and antioxidant activities, as well as other potentials. However, whether it could influence the drug-resistant E. coli-infected cells remained unanswered. Amygdalin was therefore tested in a cellular model in which human macrophages were exposed to resistant E. coli. Apoptosis was measured by flow cytometry and the lactate dehydrogenase (LDH) assay. Western immunoblotting and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were used to quantify interleukin-18 (IL-18), interleukin-1β (IL-1β), and interleukin-6 (IL-6). The production of reactive oxygen species (ROS) in macrophages was detected by ROS kit. The expression of pan-apoptotic proteins in macrophages was measured by qRT-PCR and Western immunoblotting. Drug-Resistant E. coli inhibited cell viability and enhanced apoptosis in the cellular model. In cells treated with amygdalin, this compound can inhibit cell apoptosis and reduce the expression of pro - inflammatory cytokines such as IL-1β, IL-18 and IL-6. Additionally, it decreases the production of PANoptosis proteins, Furthermore, amygdalin lowered the levels of reactive oxygen species induced by drug-resistant E. coli, in cells, demonstrating its antioxidant effects. Amygdalin, a drug with a protective role, alleviated cell damage caused by drug-resistant E. coli in human macrophages by inhibiting the PANoptosis signaling pathway.

Periplasmic Expression of a Recombinant Antibody (MabB9) in Escherichia coli

  • Chang, Hae-Choon;Kwak, Ju-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.299-304
    • /
    • 1997
  • Expression in the periplasm of Escherichia coli of cloned heavy and light chain cDNAs for Fab fragment of a murine monoclonal antibody MabB9 (${\gamma}2b$, K), specific for human plasma apolipoprotein B-100 of LDL, was studied. For the purpose, a vector for two-cistronic expression of the heavy chain cDNA, at the 5' terminus, and light chain cDNA, at the 3' terminus, was constructed using the signal sequences, pelB (for heavy chain) and ompA (for light chain) in a pET vector system. The constructed vector was transformed into E. coli BL21(DE3). The expressed heavy chain (25 kDa) and light chain (23 kDa) of the antibody molecule were detected in total cell extracts as well as in the periplasmic extracts of E. coli.

  • PDF

Soluble Expression and Purification of Human Tissue-type Plasminogen Activator Protease Domain

  • Lee, Hak-Joo;Im, Ha-Na
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2607-2612
    • /
    • 2010
  • Human tissue-type plasminogen activator (tPA) is a valuable thrombolytic agent used to successfully treat acute myocardial infarction, thromboembolic stroke, peripheral arterial occlusion, and venous thromboembolism. Recombinant tPA is accumulated as an inactive form in inclusion bodies of E. coli and is refolded in vitro, which is accompanied by extensive aggregation. In the present study, a tPA protease domain was expressed in an active soluble form in the cytosol of E. coli Rosetta-gami cells, which allowed disulfide bond formation and supplied the tRNA molecules required for six rarely used codons in E. coli. This strategy increased the amount of soluble protease domain protein and avoided the cumbersome refolding process. The purified protease domain not only degraded tPA substrate peptides but also formed a covalently bound complex with plasminogen activator inhibitor-1, as does full-length tPA. Soluble expression and purification of tPA domains may aid in functional analyses of this multi-domain protein, which has been implicated in many physiological and pathological processes.