GroEL/ES Chaperone and Low Culture Temperature Synergistically Enhanced the Soluble Expression of CGTase in E. coli |
Park, So-Lim
(Department of Biotechnology & Bioengineering, Dong-Eui University)
Kwon, Mi-Jung (Department of Biotechnology & Bioengineering, Pukyong National University) Kim, Sung-Koo (Neo Pharm, BVC 307, KRIBB) Nam, Soo-Wan (Department of Biotechnology & Bioengineering, Pukyong National University) |
1 | Chrunyk, B. A., J. Evans, J. Lillqust, P. Young, and R. Wetzel. 1993. Inclusion body formation and protein stability in sequence variants of interleukin-1. J. Biol. Chem. 268: 18053-18061 |
2 | Gragerov, A., E. Nudler, N. Komissarova, G. A. Gaitanaris, M. E. Gottesman, and V. Nikiforov. 1992. Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proc. Natl. Acad. Sci. USA 89: 10341-10344 |
3 | Nishihara, K., M. Kanemori, H. Yanagi, and T. Yura. 2000. Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl. Environ. Microbiol. 66: 884-889 |
4 | Troned, L., I. Monica, B. Camilla, M. Tarja, E. M. Tom, and W. N. Erik. 2001. Expression of active human C1 inhibitor serpin domain in E. coli. Protein Expression Purif. 22: 349- 358 DOI ScienceOn |
5 | Weissman, J. S., C. M. Hohl, O. Kovalenko, Y. Kashi, S. Chen, K. Braig, H. R. Saibil, W. A. Fenton, and A. L. Horwich. 1995. Mechanism of GroEL action: Productive release of polypeptide from a sequestered position under GroES. Cell 83: 577-587 |
6 | Wetzel, R. and B. A. Chrunyk. 1994. Inclusion body formation by interleukin-1 depends on the thermal sensitivity of a folding intermediate. FEBS Lett. 350: 245-248 |
7 | Oh, Y. P., S. T. Jeong, D.-W. Kim, E.-C. Kim, and K.-H. Yoon. 2002. Simple purification of Shiga toxin B chain from recombinant Escherichia coli. J. Microbiol. Biotechnol. 12: 986-988 |
8 | Han, N. S. and B. Y. Tao. 1999. Enhancement of solubility of Bacillus macerans cyclodextrin glucanotransferase by thioredoxin fusion. Food Sci. Biotechnol. 8: 276-279 |
9 | Park, Y. C., C. S. Kim, N. S. Han, and J. H. Seo. 1995. Expression of cyclodextrin glucanotransferase from Bacillus macerans in recombinant Escherichia coli. Foods Biotechnol. 4: 290-295 |
10 | Kim, C. I., M. D. Kim, Y. C. Park, N. S. Han, and J. H. Seo. 2000. Refolding of Bacillus macerans cyclodextrin glucanotransferase expressed as inclusion bodies in recombinant Escherichia coli. J. Microbiol. Biotechnol. 10: 632-637 |
11 | Wall, J. G. and A. Pluckthun. 1995. Effects of overexpressing folding modulators on the in vivo folding of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6: 507- 516 |
12 | Lejeune, A., K. Sakaguchi, and T. Imanaka. 1989. A spectrophotometric assay for the cyclization activity of cyclomaltohexaose (-cyclodextrin) glucanotransferase. Anal. Biochem. 181: 6-11 |
13 | Ziemienowicz, A., D. Skowyra, J. Zeilstra-Ryalls, O. Fayet, C. Georgopoulos, and M. Zylicz. 1993. Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/ GrpE, can reactivate heat-treated RNA polymerase. J. Biol. Chem. 268: 25425-25431 |
14 | Lee, P. K. C. and B. Y. Tao. 1994. High-level expression of cyclodextrin glucanotransferase in E. coli using a T7 promoter expression system. Starch 46: 67-74 |
15 | Kwon, M. J., S. L. Rark, S. K. Kim, and S. W. Nam. 2002. Overproduction of Bacillus macerans cyclodextrin glucanotransferase in E. coli by coexpression of GroEL/ES chaperone. J. Microbiol. Biotechnol. 12: 1002-1005 |
16 | Jin, H. H., N. S. Han, D. K. Kweon, Y. C. Park, and J. H. Seo. 2001. Effects of environmental factors on in vivo folding of Bacillus macerans cyclodextrin glycosyltransferase in recombinant Escherichia coli. J. Microbiol. Biotechnol. 11: 92-96 |
17 | Klein, J. and P. Dhurjati. 1995. Protein aggregation kinetics in an Escherichia coli strain overexpressing a Salmonella typhimurium CheY mutant gene. Appl. Environ. Microbiol. 61: 1220-1225 |
18 | Weissman, J. S., H. S. Rye, W. A. Fenton, J. M. Beechem, and A. L. Horwich. 1996. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell 84: 481-490 |
19 | Sachiko, M., Y. Yu, S. P. Singh, J. D. Kim, K. Hayashi, and Y. Kawata. 1998. Overproduction of -glucosidase in active form by an Escherichia coli system coexpressing the chaperonin GroEL/ES. FEBS Microbiol Lett. 159: 41-46 |
20 | Szabo, A., T. Langer, H. Schroder, J. Flanagan, B. Bukau, and F. U. Hartl. 1994. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system-DnaK, DnaJ, and GrpE. Proc. Natl. Acad. Sci. USA 91: 10345- 10349 |
21 | Standberg, L. and S. O. Enfors. 1991. Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli. Appl. Environ. Microbiol. 57: 1669- 1674 |
22 | Nishihara, K., M. Kanemori, M. Kitagawa, H. Yanagi, and T. Yura. 1998. Chaperone coexpression plasmids: Differential and synergistic roles DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl. Environ. Microbiol. 64: 1694-1699 |
23 | Piatak, M., J. A. Lane, W. Laird, M. J. Bjorn, A. Wang, and M. Williams. 1988. Expression of soluble and fully functional ricin a chain in Escherichia coli is temperature sensitive. J. Biol. Chem. 263: 4837-4843 |
24 | Dipti, S., S. Rakesh, and M. W. Rakesh. 2001. Chaperoneassisted overexpression of an active D-carbamoylase from Agrobacterium tumefaciens AM10. Proteion Expression Purif. 23: 374-379 |
25 | Thomas, J. G., A. Ayling, and F. Baneyx. 1997. Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli. Appl. Biochem. Biotechnol. 66: 197-238 |
26 | Kondo, A., J. Kohda, Y. Endo, T. Shiromizu, Y. Kurokawa, K. Nishihara, H. Yanagi, T. Yura, and H. Fukuda. 2000. Improvement of productivity of active horseradish peroxidase in Escherichia coli by coexpression of Dsb proteins. J. Biosci. Bioeng. 90: 600-606 |
27 | Lee, S. C. and P. O. Olins. 1992. Effect of overproduction of heat shock chaperones GroESL and DnaK on human procollagenase production in Escherichia coli. J. Biol. Chem. 267: 2849-2852 |