• 제목/요약/키워드: exposure measurement

검색결과 917건 처리시간 0.026초

장기 노출 $SO_2$ 간이 샘플러 개발에 관한 연구 (A study on the development of long time exposure $SO_2$ sampler)

  • 이동인
    • 한국환경과학회지
    • /
    • 제2권3호
    • /
    • pp.207-216
    • /
    • 1993
  • The concentrations of $SO_2$ and $SO_3$ were measured to estimate a new developed long time exposure $SO_2$ sampler at Onsan industrial area considering the meteorological factors from June to October, 1992. The mean concentration of $SO_3$ by $PbO_2$ method was 0.924 mg $SO_3 / 10cm^2$ $PbO_2$/day and their high values were shown in the center of the industrial area, which show potential pollution due to the increase of industrial activities and micrometeorological factors in and around the sites. As a result of statistical correlation between $SO_2$ concentration by new sampling method and $SO_3$ concentration by $PbO_2$ method in July and August, 1992, correlation coefficients were high (r=0.87, 0.91) and shown more than 0.83 value in the high concentration data set, which was arbitrarily divided into 7~10${\mu}l$$SO_2$ concentration in an attempt to further investigate these relationships. Therefore, use of new developed long time exposure TEX>$SO_2$ sampler is good for TEX>$SO_2$ measurement and valuable for estimation of air quality in the urban and industrial area. Key Words : a new developed long time exposure TEX>$SO_2$ sampler, correlation coefficients, high, $SO_2$ measurement, estimation of air Quality.

  • PDF

연구활동종사자 작업환경측정 결과 및 제도개선 방향 (Work Environment Measurement Results for Research Workers and Directions for System Improvement)

  • 황제규;변헌수
    • 한국산업보건학회지
    • /
    • 제30권4호
    • /
    • pp.342-352
    • /
    • 2020
  • Objectives: The characteristics of research workers are different from those working in the manufacturing industry. Furthermore, the reagents used change according to the research due to the characteristics of the laboratory, and the amounts used vary. In addition, since the working time changes almost every day, it is difficult to adjust the time according to exposure standards. There are also difficulties in setting standards as in the manufacturing industry since laboratory environments and the types of experiments performed are all different. For these reasons, the measurement of the working environment of research workers is not realistically carried out within the legal framework, there is a concern that the accuracy of measurement results may be degraded, and there are difficulties in securing data. The exposure evaluation based on an eight-hour time-weighted average used for measuring the working environment to be studied in this study may not be appropriate, but it was judged and consequently applied as the most suitable method among the recognized test methods. Methods: The investigation of the use of chemical substances in the research laboratory, which is the subject of this study, was conducted in the order of carrying out work environment measurement, sample analysis, and result analysis. In the case of the use of chemical substances, after organizing the substances to be measured in the working environment, the research workers were asked to write down the status, frequency, and period of use. Work environment measurement and sample analysis were conducted by a recognized test method, and the results were compared with the exposure standards (TWA: time weighted average value) for chemical substances and physical factors. Results: For the substances subject to work environment measurement, the department of chemical engineering was the most exposed, followed by the department of chemistry. This can lead to exposure to a variety of chemicals in departmental laboratories that primarily deal with chemicals, including acetone, hydrogen peroxide, nitric acid, sodium hydroxide, and normal hexane. Hydrogen chloride was measured higher than the average level of domestic work environment measurements. This can suggest that researchers in research activities should also be managed within the work environment measurement system. As a result of a comparison between the professional science and technology service industry and the education service industry, which are the most similar business types to university research laboratories among the domestic work environment measurements provided by the Korea Safety and Health Agency, acetone, dichloromethane, hydrogen peroxide, sodium hydroxide, nitric acid, normal hexane, and hydrogen chloride are items that appear higher than the average level. This can also be expressed as a basis for supporting management within the work environment measurement system. Conclusions: In the case of research activity workers' work environment measurement and management, specific details can be presented as follows. When changing projects and research, work environment measurement is carried out, and work environment measurement targets and methods are determined by the measurement and analysis method determined by the Ministry of Employment and Labor. The measurement results and exposure standards apply exposure standards for chemical substances and physical factors by the Ministry of Employment and Labor. Implementation costs include safety management expenses and submission of improvement plans when exposure standards are exceeded. The results of this study were presented only for the measurement of the working environment among the minimum health management measures for research workers, but it is necessary to prepare a system to improve the level of safety and health.

Exposure Assessment in Risk Assessment

  • Herrick Robert F.
    • 대한예방의학회:학술대회논문집
    • /
    • 대한예방의학회 1994년도 교수 연수회(환경)
    • /
    • pp.426-430
    • /
    • 1994
  • The assessment of exposure is an important component of the risk assessment process. Exposure information is used in risk assessment in at least two ways: 1) in the identification of hazards and the epidemiologic research investigating exposure-response relationships and 2) in the development of population exposure estimates. In both of these cases, the value of a chemical risk assessment is enhanced by improvements in the quality of exposure assessments. The optimum exposure assessment is the direct measurement of population exposure; however, such measurements are rarely available. Recent developments in methods for exposure assessment allow estimates to be made that are valid representations of actual exposure. The use of these exposure estimates to classify exposures correctly enhances the likelihood that causal associations between exposure and response will be correctly identified and that population risks will be accurately assessed.

  • PDF

A Pilot Establishment of the Job-Exposure Matrix of Lead Using the Standard Process Code of Nationwide Exposure Databases in Korea

  • Ju-Hyun Park;Sangjun Choi;Dong-Hee Koh;Dae Sung Lim;Hwan-Cheol Kim;Sang-Gil Lee;Jihye Lee;Ji Seon Lim;Yeji Sung;Kyoung Yoon Ko;Donguk Park
    • Safety and Health at Work
    • /
    • 제13권4호
    • /
    • pp.493-499
    • /
    • 2022
  • Background: The purpose of this study is to construct a job-exposure matrix for lead that accounts for industry and work processes within industries using a nationwide exposure database. Methods: We used the work environment measurement data (WEMD) of lead monitored nationwide from 2015 to 2016. Industrial hygienists standardized the work process codes in the database to 37 standard process and extracted key index words for each process. A total of 37 standardized process codes were allocated to each measurement based on an automated key word search based on the degree of agreement between the measurement information and the standard process index. Summary statistics, including the arithmetic mean, geometric mean, and 95th percentile level (X95), was calculated according to industry, process, and industry process. Using statistical parameters of contrast and precision, we compared the similarity of exposure groups by industry, process, and industry process. Results: The exposure intensity of lead was estimated for 583 exposure groups combined with 128 industry and 35 process. The X95 value of the "casting" process of the "manufacture of basic precious and non-ferrous metals" industry was 53.29 ㎍/m3, exceeding the occupational exposure limit of 50 ㎍/m3. Regardless of the limitation of the minimum number of samples in the exposure group, higher contrast was observed when the exposure groups were by industry process than by industry or process. Conclusion: We evaluated the exposure intensities of lead by combination of industry and process. The results will be helpful in determining more accurate information regarding exposure in lead-related epidemiological studies.

개인 노출량 조사를 통한 한국인의 극저주파 자기장 노출 수준 (Estimation of ELF-MF Exposure Levels in the Korean Population through 24-Hour Personal Exposure)

  • 정준식;김근영;홍승철;조용성;김윤신
    • 한국환경보건학회지
    • /
    • 제38권1호
    • /
    • pp.18-30
    • /
    • 2012
  • Objectives: The purpose of this study was to estimate the exposure level to extremely low frequency-magnetic fields (ELF-MF) among a selected Korean population using 24-hour personal exposure measurement. Methods: Participants were randomly selected for the measurement of MF exposure under the assumption that the subjects are representative of the overall Korean population. Levels of personal exposure to MF were measured according to the subject's daily activities. Results: The 24-hour time-weighted average (TWA) of 250 participants was $1.56{\pm}4.56$ mG (GM, GSD: 0.79, 2.46 mG). Personal exposure levels for females were higher than for males. The highest personal exposure level was shown in the age group between 20-60 years old. Personal exposure levels according to job category were higher for the non-occupational group than for the occupational group. Conclusions: Our results showed MF exposure exceeding 2 mG per day among 11.3% of the Korean population, indicating a somewhat higher percentage compared to the EMF RAPID Program's results for the U.S population.

A Critical Evaluation of DNA Adducts as Biological Markers for Human Exposure to Polycyclic Aromatic Compounds

  • Godschalk, Roger W.L.;Van Schooten, Frederik-Jan;Bartsch, Helmut
    • BMB Reports
    • /
    • 제36권1호
    • /
    • pp.1-11
    • /
    • 2003
  • The causative role of polycyclic aromatic hydrocarbons (PAH) in human carcinogenesis is undisputed. Measurements of PAH-DNA adduct levels in easily accessible white blood cells therefore represent useful early endpoints in exposure intervention of chemoprevention studies. The successful applicability of DNA adducts as early endpoints depends on several criteria:i.adduct levels in easily accessible surrogate tissues should reflect adduct levels in target-tissues, ii. toxicokinetics and the temporal relevance should be properly defined.iii. sources of inter- and intra-individual variability must be known and controllable, and finally iv. adduct analyses must have advantages as compared to other markers of PAH-exposure. In general, higher DNA adduct levels or a higher proportion of subjects with detectable DNA adduct levels were found in exposed individuals as compared with non-exposed subjects, but saturation may occur at high exposures. Furthermore, DNA adduct levels varied according to changes in exposure, for example smoking cessation resulted in lower DNA adduct levels and adduct levels paralleled seasonal variations of air-pollution. Intra-individual variation during continuous exposure was low over a short period of time (weeks), but varied significantly when longer time periods (months) were investigated. Inter-individual variation is currently only partly explained by genetic polymorphisms in genes involved in PAH-metabolism and deserves further investigation. DNA adduct measurement may have three advantages over traditional exposure assessment: i. they can smooth the extreme variability in exposure which is typical for environmental toxicants and may integrate exposure over a longer period of time. Therefore, DNA adduct assessment may reduce the monitoring effort. ii. Biological monitoring of DNA adducts accounts for all exposure routes. iii. DNA adducts may account for inter-individual differences in uptake, elimination, distribution, metabolism and repair amongst exposed individuals. In conclusion, there is now a sufficiently large scientific basis to justify the application of DNA adduct measurement as biomarkers in exposure assessment and intervention studies. Their use in risk-assessment, however, requires further investigation.

도시와 농촌 거주 노령인구의 시간활동양상 차이와 초미세먼지 (PM2.5) 노출 (Time-activity Patterns and PM2.5 Exposure of the Elderly in Urban and Rural Areas)

  • 임채윤;곽수영;이기영;홍윤철
    • 한국환경보건학회지
    • /
    • 제42권1호
    • /
    • pp.1-9
    • /
    • 2016
  • Objectives: Personal exposure to air pollution is affected by contact over time and by location. The purpose of this study was to determine the relationship between personal exposure to $PM_{2.5}$ and the time-activity patterns of the elderly in urban and rural areas. Methods: A total of 44 elderly participants were recruited for a 24-hour $PM_{2.5}$ personal exposure measurement. Twenty-four were from Seoul (urban area) and 20 were from Asan (rural area). Energy expenditure and spatiotemporal positioning were monitored through $PM_{2.5}$ measurement. Spearman correlation analysis was conducted to determine the relationship between $PM_{2.5}$ and time-activity pattern. Results: Daily average $PM_{2.5}$ personal exposures were $19.1{\pm}9.7{\mu}g/m^3$ in Seoul and $29.1{\pm}16.9{\mu}g/m^3$ in Asan. Although outdoor exposure was higher in Seoul than in Asan, residential indoor exposure was higher in Asan than in Seoul. Higher $PM_{2.5}$ personal exposure in Asan could be explained by longer time in residential indoor environments and higher indoor $PM_{2.5}$ concentrations. Seoul elderly had higher energy expenditure, which may be due to the use of mass transportation. Conclusion: Personal exposure to $PM_{2.5}$ was higher among Asan elderly than Seoul elderly because of high residential indoor concentrations and longer residential time. Lack of energy spent and higher personal exposure to $PM_{2.5}$ might have led to higher risk among the Asan elderly.

선량 환산 관례를 이용한 생애유효선량 및 라돈피폭 위험도 예측: 대학 강의실 라돈농도 중심으로 (Prediction for the Lifetime Effective Dose and Radon Exposure Risk by using Dose Conversion Convention: Base on the Indoor Radon Concentration of Lecture Room in a University)

  • 이재승;권대철
    • 대한의용생체공학회:의공학회지
    • /
    • 제39권6호
    • /
    • pp.243-249
    • /
    • 2018
  • The indoor radon concentration was measured in the lecture room of the university and the radon concentration was converted to the amount related to the radon exposure using the dose conversion convention and compared with the reference levels for the radon concentration control. The effect of indoor radon inhalation was evaluated by estimating the life effective dose and the risk of exposure. To measure the radon concentration, measurements were made with a radon meter and a dedicated analysis Capture Ver. 5.5 program in a university lecture room from January to February 2018. The radon concentration measurement was carried out for 5 consecutive hours for 24 hours after keeping the airtight condition for 12 hours before the measurement. Radon exposure risk was calculated using the radon dose and dose conversion factor. Indoor radon concentration, radon exposure risk, and annual effective dose were found within the 95% confidence interval as the minimum and maximum boundary ranges. The radon concentration in the lecture room was $43.1-79.1Bq/m^3$, and the maximum boundary range within the 95% confidence interval was $77.7Bq/m^3$. The annual effective dose was estimated to be 0.20-0.36 mSv/y (mean 0.28 mSv/y). The life-time effective dose was estimated to be 0.66-1.18 mSv (mean $0.93{\pm}0.08mSv$). Life effective doses were estimated to be 0.88-0.99 mSv and radon exposure risk was estimated to be 12.4 out of 10.9 per 100,000. Radon concentration was measured, dose effective dose was evaluated using dose conversion convention, and degree of health hazard by indoor radon exposure was evaluated by predicting radon exposure risk using nominal hazard coefficient. It was concluded that indoor living environment could be applied to other specific exposure situations.

작업공정 및 활동에 따른 국내 작업장 납 노출특성 평가 (Evaluation of Lead Exposure Characteristics by Process Category and Activity)

  • 이도희;이나루
    • 한국산업보건학회지
    • /
    • 제33권1호
    • /
    • pp.19-33
    • /
    • 2023
  • Objectives: The purpose of this study is to systematically identify situations where exposure levels are expected to be high by structuring domestic lead measurement data according to exposure processes and activities. Methods: Occupational exposure data on lead was collected from the results of the Evaluation of Reliability of Working Environment Measurement conducted by the government from 2019 to 2020. Lead exposure characteristics were analyzed by PROC (process category) and activity. The Risk Characterization Ratios (RCRs) of five PROCs according to ventilation type and lead content were evaluated using the MEASE (Metal's EASE) model. Results: The exposure data on lead (n=250) was classified into 12 PROCs and 12 activities, with an average concentration of 0.040 mg/m3 and about 14% exceeding the occupational exposure limit of 0.05 mg/m3. Processes with high exposure levels were PROC 7 (industrial spraying), 23 (open processing and transfer operations of molten metal), 24 (mechanical treatment), 25 (welding), and 26 (handling of powder containing lead). The results of evaluating RCR for the five PROCs were greater than 1 or close to 1 even if local exhaust ventilation was used. Conclusions: There is a possibility that the concentration of exposure is high in the casting and tapping of molten metal containing lead, mechanical treatment such as fracturing and abrasion, handling of powder, spraying, battery manufacturing, and waste battery recycling processes. It is necessary to implement chemical management policies for workplaces with such processes.

벤젠의 국내 허용기준에 대한 연도별 초과 경향 연구 (A Survey on Annual Exceedance Trends for the Domestic Permissible Exposure Limit for Benzene)

  • 이경화;김기연
    • 한국산업보건학회지
    • /
    • 제28권2호
    • /
    • pp.144-150
    • /
    • 2018
  • Objectives: The purpose of this study is to analyze the trend for exceedance of the domestic permissible exposure limit of benzene based on a review of the previous literature. Materials and methods: From among 13 chemical substances regulated through a PEL (Permissible Exposure Limit) in the Occupational Safety and Health Act, the research object of this study is benzene. The information utilized is work environment measurement data from 2004 to 2013. The highest level among the concentration data measured at various workplaces was selected as a representative value through the data process. N.D. (Not Detected) data was considered as 1/2 of the LOD (limit of detection). Results: Among the work environment measurement data between 2004 and 2013, the highest number of exceeding workplaces and the excess rate (12 sites and 5.4%) was observed in the 2006 data when applying the current PEL for benzene. When compared with the action level, which means a level one-half of the PEL, 2005's data showed the highest number of exceeding workplaces and greatest excess rate (89 sites & 13.3%). The number of exceeding workplaces and excess rate relative to the PEL for benzene showed an increasing trend in 2004, but tended to decrease after 2007. Conclusions: Based on the results obtained from this study, the exposure level for benzene among domestic workers is not considered to be in a safe phase regardless of the year of work environment measurement. Thus, strict preventive management in workplaces should be provided for reducing exposure to benzene.