• Title/Summary/Keyword: exposed specimen

Search Result 293, Processing Time 0.024 seconds

Evaluation of Rolling Contact Fatigue Evaluation of Wheel for High Speed Train Using a Scan Type Magnetic Camera (자기카메라에 의한 고속철도 차륜의 구름접촉 피로평가)

  • Hwang, Ji-Seong;Kwon, Seok-Jin;Lee, Jin-Yi;Seo, Jung-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.957-965
    • /
    • 2011
  • Recently, railway industry has been developed not only functional parts such as acceleration and high performance of the railway but also emotional parts such as improved ride comfort and blocking noise. However, some important components of railway such as wheel and rail always had exposed too much operation time, cyclic load and rolling contact directly. The variations of load, vibration and chemical compositions were caused of wheel and rail having a lot of different types of contact fatigue damages. Therefore, It is necessary to improve inspection and maintenance technology in order to ensure safety and reliability of railway. Many researchers have already been reported the technology. Magnetic camera, one of the non-destructive testing technique can be used to inspect and evaluate the changes of magnetic field in ferromagnetic and paramagnetic materials with cracks. When an electromagnetic is applied to a specimen, a magnetic field will be distorted around a crack on the specimen. In present paper, the distribution of magnetic property in wheel with cracks using magnetic camera had investigated. The crack can be detected and evaluated by distribution analysis of magnetic field. The magnetic camera technique can be detected and evaluated the crack by rolling contact fatigue.

  • PDF

Exposure to elevated temperatures and cooled under different regimes-a study on polypropylene concrete

  • Yaragal, Subhash C.;Ramanjaneyulu, S.
    • Advances in materials Research
    • /
    • v.5 no.1
    • /
    • pp.21-34
    • /
    • 2016
  • Fire is one of the most destructive powers to which a building structure can be subjected, often exposing concrete elements to elevated temperatures. The relative properties of concrete after such an exposure are of significant importance in terms of the serviceability of buildings. Unraveling the heating history of concrete and different cooling regimes is important for forensic research or to determine whether a fire-exposed concrete structure and its components are still structurally sound or not. Assessment of fire-damaged concrete structures usually starts with visual observation of colour change, cracking and spalling. Thus, it is important to know the effect of elevated temperatures on strength retention properties of concrete. This study reports the effect of elevated temperature on the mechanical properties of the concrete specimen with polypropylene fibres and cooled differently under various regimes. In the heating cycle, the specimen were subjected to elevated temperatures ranging from $200^{\circ}C$ to $800^{\circ}C$, in steps of $200^{\circ}C$ with a retention period of 1 hour. Then they were cooled to room temperature differently. The cooling regimes studied include, furnace cooling, air cooling and sudden cooling. After exposure to elevated temperatures and cooled differently, the weight loss, residual compressive and split tensile strengths retention characteristics were studied. Test results indicated that weight and both compressive and tensile strengths significantly reduce, with an increase in temperature and are strongly dependent on cooling regimes adopted.

Corrosion Inhibition of Steel Rebar in Concrete with the Coated MCI 2022

  • Bezad Bavarian;Lisa Reiner;Kim, Chong Y.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.63-67
    • /
    • 2002
  • The induced chemical and salt solution in water or admixture are originated to the corrosion process of the steeo rebar. These liquids penetrate into concrete as the accompanied by the chemical reaction and cause to attack the steel rebar in concrete. Concrete surfaces which it exposed to deicing, water and sea water is allowed to enter the chlorides in the structures. To prevent from the source of corrosion and deterioration Is subjected to put an end to corrode or reduce to contaminate on the steel rebar. As this reason the MCI 2022 products are applied to the surface of concrete and steel rebar. The concrete samples were made of to the kind of four, i.e. RF, MR, MS, and MM. Corrosion inhibitor is applied to coat on the surface of concrete after it had been cured for 28days. Specimen were immersed in a 3.5% sodium chloride solution. Concrete specimen were tested to determine the changes of the resistance polarization, Rp, over a 22 weeks period. MCI 2022 is significantly shown the corrosion inhibition of steel rebar in 3.5% NaCl solution. In the each different concrete sample, MS and MM is seemed to be better than others. The results are proofed that MCI 2022 is promised to maintain the inhibition of corrosion with high resistance polarization of the steel rebar in concrete.

  • PDF

A Study on Corrosive Behavior of Spring Steel by Shot-Peening Process (쇼트피닝 가공을 통한 스프링강의 부식거동에 관한 연구)

  • An, Jae-Pil;Park, Keyung-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.325-330
    • /
    • 2004
  • Recently, the request for the high strength of material is more and more increased in the area of industrial environment and machinery. To accomplish the high strength of materials, carbonizing treatment, nitrifying treatment, shot-peening method are representatively applied, however, shot-peening method is generally used among the surface processes. Shot peening is a cold working process used to impact Compressive residual stressed in the exposed surface layers. Benefits due to shot peening are increase in resistance to fatigue, stress corrosion cracking, fretting, galling, erosion and closing of pores. In this study, the influence of shot peening on the corrosion was investigated on spring steel immersed in 3.5% NaCl. The immersion test as performed on the two kinds of specimens. Corrsion potential, polarization curve, residual stress and etc, were investigated from experiment results. From test result the effect of shot peening on the corrosion was evaluated. The important results of the experimental study on the effects of shot peened on the environment corrosion of spring steels are as follows; In case of corrosion potential, shot peened specimen shows more activated negative direction as compared with parent mental. Surface of specimen, which is treated with the shot peened is placed as more activated state against inner base metal. It can cause t도 anti-corrosion effect on the base metal.

  • PDF

A Study on the Risk of Occupational Infectious Disease of Police Scientific Investigator (The Bacterial Culture of the Putrefying Dead Body Specimen)

  • Lim, Chae-Won;Kim, Jin-Gak
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.45 no.4
    • /
    • pp.154-158
    • /
    • 2013
  • The unnatural dead body refers to a corpse which is suspicious of unusual death and the dead case has been occurred more than 20 thousands times every year during the recent five years and most of them are found decayed. Police Scientific Investigators investigate unnatural dead bodies and its surroundings in all-around way and determine whether the death is involved with a crime, and most of the Scientific Investigators are exposed to a danger to get infected with pathogenic bacteria which are generated during the decaying process of dead body and are mostly to cause serious injuries on human beings. In line with the fact, the present study conducted a bacterial analysis by collecting excretions from 60 dead bodies and culturing the bacteria to evaluate infection risk of the police agents. The study cultured bacteria from 60 bodies and classified pathogenic bacteria of 108 strains, and its main bacteria are found to be them (; Acinetobacter baumannii 20 strains (19%), Pseudomonas aeruginosa 19 strains (18%), E. coli 18 strains (17%), Klebsiella pneumoniae 11 strains (10%), Proteus mirabillis 10 strains (9%), Enterococcus faecium 10 strains (9%), Staphylococcus aureus 9 strains (8%), Bacillus spp. 5 strains (5%), Streptococcus pneumoniae 3 strains (3%), Candida albicans 2 strains (2%), Mycobacterium tuberculosis 1 strains (1%)). The study results are expected to be used as educational data for preventing the Police Scientific Investigator from infections with bacteria or as a minimum data for improving work environment of the agents.

  • PDF

A study on abrasive wear characteristics of side plate of FRP ship (온도변화에 따른 유리섬유/폴리우레탄 복합재료의 충격파괴거동)

  • Kim, Byung-Tak;Koh, Sung-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.3
    • /
    • pp.188-193
    • /
    • 2009
  • The present study was undertaken to evaluate the effect of temperature on the results of Charpy impact test for glass fiber reinforced polyurethane(GF/PUR) composites. The Charpy impact test were conducted in the temperature range from -50$^{\circ}$ to 50$^{\circ}$. The impact fracture toughness of GF/PUR composites was considerably affected by temperature and it was shown that the maximum value was appeared at room temperature. It is believed that sensitivity of notch on impact fracture energy were increased with decrease in temperature of specimen. As the GF/PUR composites exposed in low temperature, impact fracture toughness of composites decreased gradually owing to the decrease of interface bonding strength caused by difference of thermal expansion coefficient between the glass fiber/polyurethane resin. And decrease of interface bonding strength of composites with decrease in specimen temperature was ascertained by SEM photographs of Charpy impact fracture surface.

Evaluation on the Applicability of Refractory Coatings to Metal Mold for Cast Iron (주철금형주조용 도형재의 적용성 평가)

  • Seo, Kum-Hee;Kim, Ki-Young;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.32 no.3
    • /
    • pp.144-149
    • /
    • 2012
  • A series of refractory mold coatings were applied to cast iron specimens, and their resistances to wear and spalling were investigated. Tests were carried out with own made measures, and also a calculation was tried for the comparison of a part of results like spalling. Worn width by scrubbing the indenter on the coating layer increased significantly at high temperature. Temperature increasing rate across the specimen when the coating side was exposed to $1000^{\circ}C$ was in the range of $14.5{\sim}75.8^{\circ}C$/sec mm, and specimens with thicker coating layer showed lower temperature increase. Severe spalling of coated layer was observed after heating the specimen, and it was able to confirm by calculation using a commercial code.

Comparison of Dynamic Sorption and Hygroexpansion of Wood by Different Cyclic Hygrothermal Changing Effects

  • Yang, Tiantian;Ma, Erni
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.191-203
    • /
    • 2016
  • To investigate the dynamic sorptive and hygroexpansive behaviors of wood by different cyclic hygrothermal changing effects, poplar (populus euramericana Cv.) specimens, were exposed to dynamic sorption processes where relative humidity (RH) and temperature changed simultaneously in sinusoidal waves at 75-45% and $5-35^{\circ}C$ (condition A) and where RH changed sinusoidally at 75-45% but temperature was controlled at $20^{\circ}C$ (condition B), both for three cyclic periods of 1, 6, and 24 h. Moisture and dimensional changes measured during the cycling gave the following results: Moisture and transverse dimensional changes were generally sinusoidal. Moisture and dimensional amplitude increased with increasing cyclic period but all were lower for thicker specimens. The amplitude ratio of condition A to condition B ranged from 1.0 to 1.6 with the maximum value of 1.57 occurring at the shortest cyclic period, not as much as expected. T/R increased as cyclic period increased or specimen thickness decreased. T/R from condition B was weaker than that from condition A. Sorption and swelling hysteresis existed in both conditions. Sorption hysteresis was negatively related to cyclic period but in positive correlation with specimen thickness. Sorption hysteresis was found more obvious in condition B, while moisture sorption coefficient and humidity expansion coefficient showed the opposite results.

Study on cement-based grout for closed-loop vertical ground heat exchanger (수직 밀폐형 지중 열교환기 뒤채움재로서 시멘트 그라우트의 적용성 검토)

  • Park, Moon-Seo;Wi, Ji-Hae;Lee, Chul-Ho;Lee, Kang-Ja;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.615-624
    • /
    • 2010
  • In this paper, the applicability of cement grout has been studied as an alternative to bentontite grout to backfill ground heat exchangers. To provide an optimal mixture design, the groutabilty and thermal conductivity of cement grouts with various mixture ratios were experimentally evaluated and compared. The unconfined compression strength of cement grout specimen was measured, which are exposed to cyclic temperature variation ranging from $50^{\circ}C$ to $-5^{\circ}C$. In addition, the integrity of the interface between circulating HDPE pipes and cement grout by performing equivalent hydraulic conductivity tests, in which a pipe locates at the center of the specimen.

  • PDF

Evaluation on Basic Properties of Crushed Sand Mortar in Freezing-Thawing and Sulfate Attack (동결융해와 황산염의 복합작용을 받는 부순모래 모르타르의 기초 특성 평가)

  • Kim, Myeong-Sik;Baek, Dong-Il;Choi, Kang-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.54-60
    • /
    • 2009
  • Exposed to various environments, concrete confronts degradation by a lot of physical and chemical reaction. Though so many experiments and theorizations on the single condition of concrete degradation have been carried out by constant studies, the truth for now is that there are few studies on the compound phenomenon of degradation related with marine environments. Accordingly, this study measured the degree of degradation in the change of external shape, the change of unit weight and compressive strength, ultrasonic velocity test, and the change of length, etc. after exposing the specimen of cement mortar to the environment between 0 cycle and the maximum of 300 cycles under the condition of aquatic curing, freezing and thawing, and compound degradation, using mineral admixture effective for concrete degradation as a binder. The result indicated that the case of adding mineral admixture showed greater resistance than that of using OPC only, and specifically, the specimen with the additive of slag powder and three component system showed very excellent resistance to freezing and thawing, and compound degradation.