• Title/Summary/Keyword: exposed specimen

Search Result 293, Processing Time 0.025 seconds

A Study on Material Degradation and Fretting Fatigue Behavior (재질 열화와 프레팅 피로거동 평가에 관한 연구)

  • Kwon, Jae-Do;Choi, Sung-Jong;Sung, Sang-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.157-162
    • /
    • 2001
  • Fretting is a potential degradation mechanism of structural components and equipments exposed to various environments and loading conditions. The fretting degradation, for example, can be observed in equipments of nuclear, fossil as well as petroleum chemical plants exposed to special environments and loading conditions. It is well known that a cast stainless steel(CF8M) used in a primary reactor coolant(RCS) degrades seriously when that material is exposed to temperature range ken $290^{\circ}C{\sim}390^{\circ}C$ for long period. This degradation can be resulted into a catastrophical failure of components. In the present paper, the characteristics of the fretting fatigue are investigated using the artificially aged CF8M specimen. The specimen of CF8M are prepared by an artificially accelerated aging technique holding 1800hr at $430^{\circ}C$ respectively. Through the investigations, the simple fatigue endurance limit of the virgin specimen is not altered from that obtained from the fatigue tests imposed the fretting fatigue. The similar tests are performed using the degraded specimen. The results are not changed from those of the virgin specimen. The significant effects of fretting fatigue imposed on both virgin and degraded specimen on the fatigue strength are not found.

  • PDF

Pore Structure of Cement Matrix Exposed to High Temperatures (고온하의 시멘트 경화체의 공극구조)

  • 송훈;도정윤;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.509-512
    • /
    • 2003
  • Dehydration and micro crack thermal expansion occur in cement hydrates of concrete structure heated by fire for a long time. The characteristic of concrete exposed to high temperature can be analyzed from distribution of porosity and pore size. Porosity showed a tendency to increase irrespective of specimen types. This is due to both the outbreak of collapse of gel comprising the cement and a micro crack by heating. Porosity did not affect the variety of specimen and increased with the same tendency throughout every specimen. In addition, the deteriorate of compressive strength resulted from increase in porosity

  • PDF

The Estimation of Steel Corrosion in Concrete Specimen Exposed under Seawater (해수에 방치한 콘크리트 시험체 중의 철근 부식 추정)

  • 문한영;김성수;류재석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.85-90
    • /
    • 1993
  • This study was performed for the purpose of obtaining the fundamental data to establish the criterion of concrete deterioration and presuming steel corrosion of concrete structures under the environment of seawater. It was exposed in seawater for 1 year that steel was embedded in the concrete specimen. The diffusion coefficients of concrete, corrosion potential and steel corrosion were considered. The results show that corrosion potential is reduced according to steel corrosion and corrosion area ratio is correlative with diffusion coefficients of concrete.

  • PDF

A Study on Material Degradation and Fretting Fatigue Behavior (재질 열화와 프레팅 피로거동 평가에 관한 연구)

  • Gwon, Jae-Do;Seong, Sang-Seok;Choe, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1287-1293
    • /
    • 2001
  • Fretting is a potential degradation mechanism of structural components and equipments exposed to various environments and loading conditions. The fretting degradation, for example, for example, can be observed in equipments of nuclear, fossil as well as petroleum chemical plants exposed to special environments and loading conditions. It is well known that a cast stainless steel(CF8M) used in a primary reactor coolant(RCS) degrades seriously when that material is exposed to temperature range from 290$\^{C}$∼390$\^{C}$ for long period. This degradation can be resulted into a catastrophical failure of components. In the present paper, the characteristics of the fretting fatigue are investigated using the artificially aged CF8M specimen. The specimen of CF8M are prepared by an artificially accelerated aging technique holding 180hr at 430$\^{C}$ respectively. Through the investigations, the simple fatigue endurance limit of the virgin specimen is not altered from that obtained from the fatigue tests imposed the fretting fatigue. The similar tests are performed using the degraded specimen. The results are not changed from those of the virgin specimen. The significant effects of fretting fatigue imposed on both virgin and degraded specimen on the fatigue strength are not found.

Dispersion Effect of Hydration Heat in Mass Concrete Using Embedded Heat Pipe (매입형 히트파이프를 이용한 매스콘크리트 수화열 분산 효과)

  • Kim, Myung-Sik;Youm, Chi-Sun;Baek, Dong-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.85-90
    • /
    • 2009
  • Although most of existing hydration heat control methods show a certain degree of hydration heat control, generally, there are many problems as mentioned above. Therefore, our laboratory previously developed a hydration heat control method using an exposed heat pipe, which solves most of these problems and simultaneously displays excellent hydration heat control. Unfortunately, even this method had some problems such as the processing, transport, and assembly of heat pipes, and the surface treatment of a cut plane after pouring, and hardening concrete. Therefore, in this study, a hydration heat control method using an embedded pipe has been developed with the expectation that this method solves those problems in hydration heat control using an exposed heat pipe. As a result of the experiment, the peak temperature of ECHP and ICHP specimen about $4.5{\sim}6.5^{\circ}C$ than the OPC specimen and the probability of thermal cracked generated in ECHP and ICHP specimen decreased up to $13{\sim}20%$. Finally, it was confirmed in this study that the hydration heat control method using an embedded heat pipe is significantly more superior and cost effective than the existing method of an exposed one.

Microstructural Analysis on Oxide Film of Al2024 Exposed to Atmospheric Conditions (대기 노출된 Al2024 알루미늄 합금 산화막에 대한 미세조직 분석)

  • Kwon, Daeyeop;Choi, Wonjun;Bahn, Chi Bum
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.62-70
    • /
    • 2021
  • Al2024 aluminum alloy specimens were exposed to atmospheric conditions for maximum 24 months and analyzed by electron microscopes to characterize their corrosion behavior and oxide film characteristics. As the exposure time increased from 12 months to 24 months, the number of pitting sites per 1 mm2 increased from ~100 to ~200. The uniform oxidation (or non-pitting) region of the 12-month exposure specimen showed 30~120 nm thick oxide layer, whereas the 24-month exposure specimen showed 170~200 nm thick oxide with the local oxygen penetration region up to 1 ㎛ deep. There was no local corrosion area observed in the 12-month exposure specimen except pitting. However, in the 24-month exposure specimen, local oxygen penetration region was observed beneath the uniform oxide layer and near the pitting cavity. Al2024 showed two times thicker uniform oxide layer but much shallower local oxygen penetration region than Al1050, which appears to be related to low Si concentration. Further research is needed on the effects of Mg segregation near the tip of the oxygen penetration region.

New test method for real-time measurement of SCC initiation of thin disk specimen in high-temperature primary water environment

  • Geon Woo Jeon;Sung Woo Kim;Dong Jin Kim;Chang Yeol Jeong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4481-4490
    • /
    • 2022
  • In this study, a new rupture disk corrosion test (RDCT) method was developed for real-time detection of stress corrosion cracking (SCC) initiation of Alloy 600 in a primary water environment of pressurized water reactors. In the RDCT method, one side of a disk specimen was exposed to a simulated primary water at high temperature and pressure while the other side was maintained at ambient pressure, inducing a dome-shaped deformation and tensile stress on the specimen. When SCC occurs in the primary water environment, it leads to the specimen rupture or water leakage through the specimen, which can be detected in real-time using a pressure gauge. The tensile stress applied to the disk specimen was calculated using a finite element analysis. The tensile stress was calculated to increase as the specimen thickness decreased. The SCC initiation time of the specimen was evaluated by the RDCT method, from which result it was found that the crack initiation time decreased with the decrease of specimen thickness owing to the increase of applied stress. After the SCC initiation test, many cracks were observed on the specimen surface in an intergranular fracture mode, which is a typical characteristic of SCC in the primary water environment.

Effect of Dentin Desensitizer on the Hypersensitivity of Teeth with Non-carious Cervical Lesions Subsequent to Ultrasonic Scaling (지각과민처치제가 초음파 스케일링 처리한 비우식성 치경부 병소가 있는 치아의 지각과민증에 주는 영향)

  • Cho, Jae-Hyung;Seok, Soohwang;Lee, Sang-Hyeok;Lim, Bum-Soon
    • Korean Journal of Dental Materials
    • /
    • v.43 no.1
    • /
    • pp.17-28
    • /
    • 2016
  • The aim of this study was to evaluate the changes in dentinal permeability after application of dentin desensitizer on exposed dentin immediately after ultrasonic scaling to teeth with non-carious cervical lesions. Thirty caries-free extracted molars were fixed to slide glasses after horizontally being sectioned at 5 mm below the cemento- enamel junction (CEJ). The prepared specimen was connected to a fluid flow measuring device (nano-Flow), and a V-shaped cavity was formed at the CEJ to imitate the non-carious cervical lesion. After no fluid leakage was confirmed in the connected system with specimen, tooth surface was treated ultrasonic cleaning with piezoelectric ultrasonic scalers until dentinal tubules were exposed. And 6 different desensitizers were applied on exposed dentin. Real-time measurements of dentinal fluid flow were performed during ultrasonic scaling and application of dentin desensitizer. To evaluate the occlusion of exposed dentinal tubules, tooth surface was examined by SEM. Following results were observed. After ultrasonic scaling, more dentinal tubules were exposed on the tooth with non-carious cervical lesions compared to tooth without lesions. The rate of fluid flow measured with nano-Flow system had correlation with the degree of dentin occlusion observed with SEM after application of desensitizers on exposed dentin. Desensitizers with glutaraldehyde and HEMA did not decrease the rate of fluid flow and did not show dentin occlusion. Desensitizers with oxalate showed the limited effects on the rate of fluid flow and dentinal tubule occlusion. Desensitizer with resin monomer showed the significant effect on the rate of fluid flow and dentin occlusion.

Effect of Moisture Migration in Concrete with Hating Rate on Concrete Spalling (가열속도에 따른 콘크리트 내부의 수분이동이 폭렬발생에 미치는 영향)

  • Choe, Gyeong-Cheol;Kim, Gyu-Yong;Nam, Jeong-Soo;Kim, Hong-Seop;Yoon, Min-Ho;Hwang, Ui-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.246-247
    • /
    • 2017
  • In this study, it reviewed the effect of moisture migration in concrete with heating rate on concrete spalling. Concrete specimens with compressive strength 30MPa and 110MPa are used and its size is □100×100×h200mm. And, two kinds of heating rate are set such as IS0 834 and 1℃/min. As a result, in the concrete specimen exposed to ISO 834 standard heating condition, moisture could migrate through pore network and surface concrete pieces fall out by generating moisture clog near the surface in 110MPa concrete specimen. Meanwhile, In the case of concrete specimens exposed to 1℃/min. heating condition, it is appeared that moisture could not migrate because temperature is distributed uniformly. Therefore, surface spalling is not occurred with low heating rate. However, in the case of 110MPa concrete specimen is exploded even though it heated by low heating rate.

  • PDF

Surface Appearance of Galvanized Steel with Outdoor Exposure Testing in Korea for 36 Months (36개월간 국내 옥외폭로시험에 따른 아연도강의 표면외관 변화)

  • Kim, K.T.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.301-309
    • /
    • 2018
  • If galvanized steel is exposed to an outdoor environment, atmospheric corrosion will occur with time and red rust will form when the sacrificial protection capacity of zinc reaches its limit. With corrosion, the surface appearance of steel changes, and the properties of the exterior materials degrade. In this study, two kinds of galvanized steel, (GA and GI specimens) were subjected to an outdoor exposure test for 36 months in six regions of Korea. Chrominance (color, chroma, and brightness) and glossiness surface analyses were performed. The color change was not significant, regardless of the exposed area or the specimens tested. With increasing exposure times, the GA specimen became blackened by the formation of zinc oxide, and red coloration was increased by the formation of red rust. As the exposure time of GI specimen increased, the surface proceeded to blacken, but no red rust was formed and the color did not change significantly. Regardless of the outdoor exposure area or the specimen, longer exposure times led to lower glossiness, and this behavior appears to be influenced by the formation of zinc oxide.