• Title/Summary/Keyword: exponential protocol

Search Result 68, Processing Time 0.026 seconds

Enhancements of T-REFWA to Mitigate Link Error-Related Degradations in Hybrid Wired/Wireless Networks

  • Nishiyama, Hiraki;Taleb, Tarik;Nemoto, Yoshiaki;Jamalipour, Abbas;Kato, Nei
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.391-400
    • /
    • 2006
  • With the on-going wireless access technologies, the Internet has become accessible anytime anywhere. In wireless networks, link errors significantly degrade the performance of the transmission control protocol (TCP). To cope with this issue, this paper improves the recently-proposed terrestrial REFWA (T-REFWA) scheme by adding a new error recovery mechanism to its original design. In the T-REFWA scheme, senders are acknowledged with appropriate sending rates at which an efficient and fair utilization of network resources can be achieved. As the feedback values are computed independently of link errors, senders can keep transmitting data at high rates even in case of link error occurrences. Using this feature, the proposed error recovery mechanism can achieve high throughput in environments with high bit error rates. The throughput is further improved by disabling the exponential back-off algorithm of TCP so that long idle times are avoided in case of link errors. We show through simulations that the proposed method improves TCP performance in high bit error rates. Compared with several TCP variants, the proposed error recovery scheme exhibits higher link utilization and guarantees system fairness for different bit error rates.

Lightpaths Routing for Single Link Failure Survivability in IP-over-WDM Networks

  • Javed, Muhammad;Thulasiraman, Krishnaiyan;Xue, Guoliang(Larry)
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.394-401
    • /
    • 2007
  • High speed all optical network is a viable option to satisfy the exponential growth of internet usage in the recent years. Optical networks offer very high bit rates and, by employing technologies like internet protocol over wavelength division multiplexing(IP-over-WDM), these high bit rates can be effectively utilized. However, failure of a network component, carrying such high speed data traffic can result in enormous loss of data in a few seconds and persistence of a failure can severely degrade the performance of the entire network. Designing IP-over-WDM networks, which can withstand failures, has been subject of considerable interest in the research community recently. Most of the research is focused on the failure of optical links in the network. This paper addresses the problem of designing IP-over-WDM networks that do not suffer service degradation in case of a single link failure. The paper proposes an approach based on the framework provided by a recent paper by M. Kurant and P. Thiran. The proposed approach can be used to design large survivable IP-over-WDM networks.

Scheduling of Real-time and Nonreal-time Traffics in IEEE 802.11 Wireless LAN (무선랜에서의 실시간 및 비실시간 트래픽 스케줄링)

  • Lee, Ju-Hee;Lee, Chae Y.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.2
    • /
    • pp.75-89
    • /
    • 2003
  • Media Access Control (MAC) Protocol in IEEE 802.11 Wireless LAN standard supports two types of services, synchronous and asynchronous. Synchronous real-time traffic is served by Point Coordination Function (PCF) that implements polling access method. Asynchronous nonreal-time traffic is provided by Distributed Coordination Function (DCF) based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol. Since real-time traffic is sensitive to delay, and nonreal-time traffic to error and throughput, proper traffic scheduling algorithm needs to be designed. But it is known that the standard IEEE 802.11 scheme is insufficient to serve real-time traffic. In this paper, real-time traffic scheduling and admission control algorithm is proposed. To satisfy the deadline violation probability of the real time traffic the downlink traffic is scheduled before the uplink by Earliest Due Date (EDD) rule. Admission of real-time connection is controlled to satisfy the minimum throughput of nonreal-time traffic which is estimated by exponential smoothing. Simulation is performed to have proper system capacity that satisfies the Quality of Service (QoS) requirement. Tradeoff between real-time and nonreal-time stations is demonstrated. The admission control and the EDD with downlink-first scheduling are illustrated to be effective for the real-time traffic in the wireless LAN.

Channel Reservation based DCF MAC Protocol for Improving Performance in IEEE 802.11 WLANs (IEEE 802.11 무선 랜에서 성능 향상을 위한 채널 예약 기반 DCF MAC 프로토콜)

  • Hyun, Jong-Uk;Kim, Sunmyeng
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2159-2166
    • /
    • 2016
  • In the IEEE 802.11 DCF (Distributed Coordination Function) protocol, the binary exponential backoff algorithm is used to avoid data collisions. However, as the number of stations increases of, the collision probability tends to grow and the overall network performance is reduced. To solve this problem, this paper proposes a data transmission scheme based on the channel reservation method. In the proposed scheme, channel time is divided into reservation period and contention period. During the reservation period, stations succeeded in channel reservation transmit their own data packets in sequence without contention. During the contention period, each station sends its data packets through contentions as in DCF. During both the reservation period and the contention period, each station sends a request for channel reservation for the next reservation period to an AP (Access Point). After receiving such a channel reservation request from each station, the AP decides whether the reservation is succeeded and sends the result via a beacon frame to each station. Performance of the proposed scheme is analyzed through simulations. The simulation results show that the proposed scheme tends to reduce the collision probability of DCF and to improve the overall network performance.

Performance evaluation of cooperative MAC protocol at ad hoc networks under real traffic environments (실제적인 트래픽 환경에서 애드 혹 네트워크용 협력통신 MAC 프로토콜 성능평가)

  • Jang, Jae-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2237-2246
    • /
    • 2010
  • In this paper, the performance of a RCO-MAC protocol is evaluated using a different traffic model. Data frames are assumed to generate based on an exponential distribution from one source node and then directly to be stored into the input buffer in the source node. System throughput, average access delay and average system delay are used as a performance measure. Performance evaluation is carried out by the computer simulation. Numerical results show that the RCO-MAC scheme offers 18% higher system throughput than the rDCF scheme. In addition, the numerical results show that the RCO-MAC protocol also offers the better average system delay under any traffic load than that by the rDCF scheme, which was not obtained in the previous research due to the saturated traffic model.

The software architecture for the internal data processing in Gigabit IP Router (기가비트 라우터 시스템에서의 내부 데이터 처리를 위한 소프트웨어 구조)

  • Lee, Wang-Bong;Chung, Young-Sik;Kim, Tae-Il;Bang, Young-Cheol
    • The KIPS Transactions:PartC
    • /
    • v.10C no.1
    • /
    • pp.71-76
    • /
    • 2003
  • Internet traffic is getting tremendously heavier due to the exponential growth of the Internet users, the spread of the E-commerce and the network games. High-speed routers for fast packet forwarding are commercially available to satisfy the growing bandwidth. A high-speed router, which has the decentralized multiprocessing architecture for IP and routing functions, consists of host processors, line interfaces and switch fabrics. In this paper, we propose a software architecture tuned for high-speed non-forwarding packet manipulation. IPCMP (Inter-Processor Communication Message Protocol), which is a mechanism for IPC (Inter-Processor Communication), is also proposed and implemented as well. Proposed IPC mechanism results in faster packet-processing rate by 10% as compared to the conventional IPC mechanism using UDP/IP.

Architecture and Hardwarw Implementation of Dynamic GSMP V3 with Dynamic Buffer Management Scheme (동적 버퍼관리 방식의 Dynamic GSMP V3의 구조와 하드웨어 구현)

  • Kim, Young-Chul;Lee, Tae-Won;Kim, Kwang-Ok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.8
    • /
    • pp.30-41
    • /
    • 2001
  • In this paper, the architecture of Dynamic GSMP V3(General Switch Management Protocol Version 3), an open interface protocol with resource management functions for efficient IP service on ATM over MPLS, is proposed and implemented in hardware. And we compare and analyze the proposed GSMP with the GSMP under standardization process in terms of CLR (Cell Loss Rate). We design the Slave block of the Dynamic GSMP V3 using SAM-SUNG SoG $0.5{\mu}m$ process, which performs functions for switch connection control in the ATM Switch. In order to compare difference performanaces between the proposed method and the conventional one, we conducts simulations using the minimum buffer search algorithm with random cell generation. The exponential results show that the proposed method leads to performance enhancement in CLR.

  • PDF

A Study on the Deperm Protocols Considering Demagnetizing Field of a Ferromagnetic Material

  • Ju, Hye Sun;Won, Hyuk;Chung, Hyun Ju;Park, Gwan Soo
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.43-48
    • /
    • 2014
  • Magnetic materials with large coercive force and high squareness ratio are currently developing to meet an industrial demand. Since a ferromagnetic material has hysteresis characteristics, it is hard to demagnetize a ferromagnetic material precisely. In this paper, we describe deperm processes and conduct an analysis of residual magnetization of ferromagnetic material using the Preisach modeling with a two-dimensional finite elements method (FEM). From the results, it was shown that an exponential decrement form of deperm protocol is more efficient than a linear decrement form because of the demagnetizing field in the ferromagnetic material.

Implementation of outgoing packet processor for ATM based MPLS LER System

  • Park, Wan-Ki;Kwak, Dong-Yong;Kim, Dae-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1851-1854
    • /
    • 2002
  • The Internet with conventional routing scheme cannot meet user demands driven from drastic growth in the Internet user and various service and traffic type. MPLS(Multi Protocol Label Switching) was introduced to the Internet fur solution to resolve this problem. MPLS is a paradigm to integrate higher layer’s software routing functions including layer-3 routing with layer-2 switching. But, the exponential growth of Internet traffic brings out of label space. One scalable solution to cope with this problem is to introduce flow merge technique, i. e. a group of flows is forwarded using the same label. Specially, IETF(Internet Engineering Task Force) recommends that ATM based MPLS system may include VC merge function, so it is scalable to increase of internet traffic. We implemented the MPLS LER system that includes the look-up and forwarding function in incoming path and VC merging function and limited traffic management function in outgoing path. This paper describes the implementation of the LER’s outgoing parts.

  • PDF

A New Backoff algorithm considering Hop Count for the IEEE 802.11 Distributed Coordination Function

  • Nam, Jae-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.205-208
    • /
    • 2007
  • The IEEE 802.11 is a MAC protocol which has been standardized by IEEE for Wireless Local Area Networks (WLANs). In the IEEE 802.11 WLANs, network nodes experiencing collisions on the shared channel need to backoff for a random period of time, which is uniformly selected from the Contention Window (CW). This contention window is dynamically controlled by the Binary Exponential Backoff (BEB) algorithm. However, the BEB scheme suffers from a fairness problem; some nodes can achieve significantly larger throughput than others. This paper proposes a new backoff algorithm for the IEEE 802.11 DCF scheme. This algorithm uses the hop count for considering fairness. It causes flows with high hop count to generate short backoff interval than those with low hop count, thus getting high priority. Therefore, when a collision occurs, the modified IEEE 802.11 DCF assigns higher priority to flow to be close to a destination.