• Title/Summary/Keyword: explosives demolition

Search Result 75, Processing Time 0.025 seconds

Variations of the Pollutant Concentration by Explosive Demolition of a Building and Management Plan of Non-point Source Pollution (구조물의 해체 공정별 오염농도 변화 및 비점오염원 관리 방안)

  • Chu, Kyoung-Hoon;Yoo, Sung-Soo;Kim, Hyo-Jin;Lee, Kyoung-Hee;Ko, Kwang-Baik
    • Explosives and Blasting
    • /
    • v.29 no.1
    • /
    • pp.17-26
    • /
    • 2011
  • In this study, the pollutants contained in water and soil samples taken from the explosive demolition site were examined to investigate the effects on environment, and management plan of non-point source pollution in the demolition site was suggested through characterizing the movement of the pollutant with time. As results, pH value of the water and soil samples after the demolition work was 8.5~9.3 which exceeds the Korean environmental criterion of water and soil range due to calcium hydroxide compounds in the concrete. The concentration level of heavy metals caused by the explosive demolition doesn't exceed the environmental criterion of water and soil doesn't exceed the environmental criterion of water and soil quality, and the influence of water and soil pollution on the environment was not considered. The concentration of the heavy metals was analyzed and that of Cr, Cu, Zn and Hg among the heavy metals increased after the drilling and explosive demolition. This says that concentration of the heavy metals during explosive demolition works needs to be monitored. The most pollutants with time or rain dilution into the demolition site decreased and this means that the pollutants caused by the explosive demolition might have influenced to vicinity of the demolition sites as non-point pollution.

Development of Charging Container for Cutting Steel Plate and Evaluation of its Cutting Performance (강재 절단을 위한 장약용기의 개발과 절단 성능 평가)

  • Park, Hoon;Min, Gyeong-Jo;Cho, Sang-Ho;Suk, Chul-Gi
    • Explosives and Blasting
    • /
    • v.36 no.2
    • /
    • pp.10-18
    • /
    • 2018
  • The shaped charge is used in explosive demolition of steel frame structure, but it was often not used because it was limited to use or impossible to supply at domestic and foreign. To solve this problem, we needed a device that could generate matal jets using industrial explosive. In this study, we made a charging container, which metal jets were generated when explosives were detonated. Cutting performance tests were carried out to evaluate the effect of cutting of a charging container on a steel plate of 25mm thickness. In addition, we compared the results between the numerical simulation of penetration process and cutting performance tests and then was evaluated a cutting performance for steel plates of 35mm and 70mm thickness.

Design Parameters for Development of flexible Linear Shaped Charge (가소성 선형 성형폭약 제조를 위한 설계변수에 관한 연구)

  • 박근순;임한욱
    • Tunnel and Underground Space
    • /
    • v.13 no.3
    • /
    • pp.225-234
    • /
    • 2003
  • The structures to be demolished have become diverse in types from reinforced concrete to steel. The demand for demolition of steel structures is recently increasing in Korea. Most of flexible linear-shaped charges for steel demolition are now imported from foreign countries. To determine the optimum parameters of design far domestic development of flexible linear-shaped charges, some basic experiments have been carried out and their results are summarized as follows; Copper is shown to be superior to aluminium and lead as a liner material. It is also proved that the optimum apex angle of liner is 90$^{\circ}$ in comparision with 45$^{\circ}$, 60$^{\circ}$ and 120$^{\circ}$ Adequate thickness of liners, standoff distance in terms of quantity of explosives are also examined. Explosives and liners are required to be plasticized in order to improve the bond between explosives and various shapes of steel structures.

A Case Study of Explosive Demolition of Apartment and Underground Structures (성남 하대원 주공 아파트 및 화정 지하구조물 발파해체 사례분석)

  • 이천식;이윤재;김형섭
    • Explosives and Blasting
    • /
    • v.19 no.3
    • /
    • pp.75-89
    • /
    • 2001
  • 아파트 재건축을 위해 발파해체공법을 이용하여 실시한 5층 아파트 9개동의 시공사례를 중심으로 국내 아파트 발파해체에 따른 경제적 공법의 제시와 시공되어진 해체구조물의 현황과 공법, 사전처리 공법등을 소개하고 또한, 지상구조물이 아닌 지하구조물의 해체를 위한 콘크리트의 부분 발파사례를 통하여 해체 분야의 발전 방안을 고찰하였다.

  • PDF

Effect of Vertical Load on Fragmentation by Demolition of Model Concrete Pillar (콘크리트 기둥의 발파해체시 파쇄도에 미치는 수직하중의 영향)

  • Kim, Seung-Kon;Park, Hoon;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.20 no.3
    • /
    • pp.97-109
    • /
    • 2002
  • 본 연구에서는 콘크리트 기둥 발파시 단부 조건을 고려하여 수직 하중에 따른 발파에 의한 파쇄형태를 비교하였다. 또한 파쇄도에 대한 정량적인 해석을 위해 상·하단부의 무게비와 각 방향별 단면의 면적비를 비교하였으며, 장전층을 달리한 모형 구조물 발파해 체시 각 층별 기둥의 파쇄형태와 방향별 면적비를 비교하여, 전체적인 구조물의 파쇄도를 비교하였다.

On the simulation technique of structural demolition (구조물 해체시의 시뮬레이션 기술 그 현상과 동향에 대하여)

  • E. C. Seichi
    • Explosives and Blasting
    • /
    • v.13 no.1
    • /
    • pp.11-19
    • /
    • 1995
  • 발파에 의한 구조물해체기술은 구미를 중심으로 한 많은 실적을 바탕으로 하고, 이에 따른 경험이 뒷받침된 기술이라 말할 수 있다. 일본에 있어서, 본 기술을 합리적으로 안전하고, 확실한 해체공법 의 하나로 보급시키기 위해서는 구축물의 붕괴설계기술과 설계대로 붕괴시키는 시공기술이 필요 불가결 하다. 본보고서는 빌딩 등 콘크리트 구조물의 폭파해체시에 있어서 구출물 붕괴 시뮬레이션 기술에 관하여, 문헌 등에 의한 조사를 중심으로 기술의 현상과 동향 및 금후의 전망에 대하여 언급하였다. 그 결과 붕괴시의 시뮬레이션 수법으로서, 기능이 확장된 개별요소법 또는 불연속변형법의 적용가능성이 있음을 알게 되었다.

  • PDF

An Experimental Study on Blasting Collapse Behavior of Asymmetry Structure with High Aspect Ratio (고종횡비 비대칭 구조물의 발파붕괴 거동에 관한 연구)

  • Song, Young-Suk;Jung, Min-Su;Jung, Dong-Wol;Hur, Won-Ho
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • In blasting demolition, a method would be chosen among many depends on shape and system of a structure and its surround. To demolish using explosives a structure, which is asymmetric and with high aspect ratio, pre-weakening, explosive locations, detonating delay, and surround conditions are needed to be considered in front to design blasting demolition plan. In this study, to over turn asymmetric and high aspect ratio structure in safe, a simulation using a software named Extreme Loadings for Structures, ELS, had performed. In results, it is achieved optimized pre-weakening shapes and locations, which prevent kick back motion of the structure when it collapse, by analyzing moment distribution caused by pre-weakening. And of structural collapse and by minimizing asymmetric structure's torsional moment. Also, after the demolition, simulation results are also compared with actual collapse behavior. In results, it is confirmed the accuracy of collapse behaviour simulation results, and in blasting demolition, kick back motion can be controled by adjusting pre-weakening shape and location, and the torsional moment of an asymmetric structure also can be solved by optimizing detonation locations and its time intervals.

Pre-weakening Analysis for the Explosive Demolition on the Structural System Consisted of Load Bearing Wall (내력벽으로 구성된 구조물의 발파해체를 위한 사전취약화 해석)

  • Choi, Hoon;Hong, Soon-Joong;Mun, Byung-Hwa;Kim, Hyo-Jin;Yoon, Soon-Jong
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.76-85
    • /
    • 2010
  • In this paper, we present the result of an analytical investigation concerning the demolition range for the pre-weakening of load-bearing wall in explosive demolition. Pre-weakening of load-bearing wall is usually conducted based on field experience because reliable specifications or guidelines for the design of pre-weakening have not yet been established in Korea. This study is one of the efforts to develop such a reliable specification or guideline for the pre-weakening process. Hence, the focus of the study is on the estimation of pre-weakening range of load-bearing wall. For the purpose, a finite element analysis (FE analysis) was conducted, and a pre-weakening range of load-bearing wall was suggested based on the analysis result.

Fracture formation and fracture Volume on Vertical Load by Blasting Demolition of Model Reinforced Concrete Pillars (철근 콘크리트 기둥 발파시 수직하중에 따른 파쇄형태 및 파쇄체적)

  • Park Hoon;Song Jung-Un;Kim Seung-Kon
    • Explosives and Blasting
    • /
    • v.23 no.2
    • /
    • pp.45-56
    • /
    • 2005
  • In this study, fracture formation and fracture volume by blasting demolition of model reinforced concrete pillars were compared with various vertical load and influence of reinforced steel bar. The more vertical load increased, the more tensile cracks and vertical direction cracks produced. In vertical load of 2.0ton, tensile cracks on vertical direction were predominantly produced. Generally, the more vertical load increased, the more bending deformation of concrete steel bar decreased. As a result, vertical load was influenced fracture formation of concrete and bending deformation of reinforced steel bar. Reinforced steel bar was influenced fracture volume of concrete. According to vertical load and influence of reinforce steel bar by blasting demolition of reinforced concrete pillars, drilling and blasting pattern may be modified.

Evaluation of Progressive Collapse Resisting Capacity of RC structure using the Applied Element Method (응용요소법을 이용한 철근콘크리트 구조물의 연쇄붕괴 저항성능 평가)

  • Park, Hoon;Suk, Chul-Gi;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • Progressive collapse is generally defined as a local failure of structural members occurring due to abnormal load which results in the partial collapse or total collapse of a structure. Unlike progressive collapse, explosive demolition is a method of inducing the total collapse of structure by removing all or portion of structural members. In explosive demolition the partial collapse of the structural members can be controlled at appropriate time intervals by blasting, to induce the progressive collapse of the structure and control the collapse behavior. In this study, a nonlinear dynamic analysis was carried out in order to apply the progressive collapse process to explosive demolition design of the RC structure. The occurrence of progressive collapse of analytical models was examined according to the number of floors, the removed column height and span length. For models that resisted progressive collapse, progressive collapse resisting capacity was evaluated.